Explore l'estimation ponctuelle dans les statistiques, en discutant du biais, de la variance, de l'erreur quadratique moyenne et de la cohérence des estimateurs.
Couvre la probabilité maximale d'estimation dans l'inférence statistique, en discutant des propriétés MLE, des exemples et de l'unicité dans les familles exponentielles.
Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Explore l'optimalité dans la théorie de la décision et l'estimation impartiale, en mettant l'accent sur la suffisance, l'exhaustivité et les limites inférieures du risque.