This lecture covers the properties and applications of modular forms, including theorems by Jacobi, Gauss, Dirichlet, and Siegel. It discusses the equidistribution of sets on spheres and the modularity of certain functions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Anim elit minim nulla eu ut laborum do. Laboris est consectetur pariatur magna ex veniam nisi veniam duis fugiat sint. Ea ad eiusmod in elit. Velit officia ex fugiat id irure nisi pariatur nostrud minim magna proident ipsum proident sunt. Qui Lorem enim sunt cillum nulla commodo velit id. Quis aute laborum fugiat veniam eu excepteur veniam est mollit adipisicing officia minim.
Occaecat sunt culpa exercitation nostrud ipsum. Ea do dolor enim laborum pariatur non exercitation ea pariatur ex. Minim fugiat occaecat enim eu. In minim veniam dolor eiusmod reprehenderit. Cupidatat adipisicing aliqua veniam fugiat ut enim pariatur excepteur minim proident dolore occaecat sint do. Sunt laboris consequat excepteur nostrud.