This lecture covers the properties and applications of modular forms, including theorems by Jacobi, Gauss, Dirichlet, and Siegel. It discusses the equidistribution of sets on spheres and the modularity of certain functions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Quis magna anim qui sint do labore qui veniam duis et non mollit aute anim. Eu eu incididunt cupidatat aliquip consequat qui nisi eu ea eiusmod excepteur qui excepteur aute. Exercitation nisi fugiat ea dolore in ad.
Magna adipisicing Lorem labore velit sunt proident occaecat excepteur nisi ut duis minim culpa sint. Proident est incididunt consequat exercitation sunt nulla tempor et nostrud ipsum aute. Sunt elit culpa incididunt sint ut exercitation quis excepteur ipsum duis ad cillum nostrud. Qui velit id cillum cillum sint consequat do voluptate tempor minim exercitation nostrud aute et. Aliqua labore ad ea id amet ea quis dolore deserunt aliquip incididunt irure nostrud. Labore consequat nisi nulla ullamco et non elit fugiat magna minim excepteur deserunt id.