Lecture

Convexifying Nonconvex Problems: SVM and Dimensionality Reduction

Description

This lecture covers the concept of convexifying nonconvex problems, focusing on Support Vector Machines (SVM) and nonlinear dimensionality reduction. It explains the primal and dual formulations of SVM, the kernel trick, and the use of Lagrange multipliers. Additionally, it delves into nonlinear dimensionality reduction techniques, such as constructing k-nearest neighborhood graphs and solving optimization problems to unfold high-dimensional data. The instructor also discusses the challenges of exact solutions for convex-cardinality problems and introduces the l₁-norm heuristic as an approximation method.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.