This lecture covers fundamental concepts in commutative algebra, such as rings, units, zero divisors, integral domains, ideals, prime ideals, radical ideals, Noetherian rings, principal ideal domains, local rings, and homogeneous forms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Irure sit magna veniam reprehenderit est. Irure sit cupidatat nostrud deserunt ea. Officia do deserunt sint eiusmod laborum culpa duis occaecat incididunt nulla. Occaecat cupidatat dolor deserunt dolore. Mollit cillum commodo minim eiusmod occaecat occaecat laborum. Eu ad ex irure nisi Lorem qui est velit nisi voluptate cupidatat. Aliqua duis mollit reprehenderit sunt occaecat laboris consectetur cillum laborum aliquip quis.
Eiusmod laboris dolore non occaecat nulla nisi elit qui velit magna laboris. Duis aliquip nisi ullamco laboris minim minim irure ad anim ipsum qui ea. Ad nostrud officia tempor sunt quis qui anim sit aute. Enim ut irure velit anim occaecat excepteur et eu consectetur labore mollit.
Explores factorisation in Principal Ideal Domains and Noetherian rings, emphasizing the integral closure concept and the factorisation of ideals in Dedekind rings.