This lecture covers fundamental concepts in commutative algebra, such as rings, units, zero divisors, integral domains, ideals, prime ideals, radical ideals, Noetherian rings, principal ideal domains, local rings, and homogeneous forms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Magna Lorem fugiat sit amet mollit laboris velit est consectetur. Magna in ullamco ut exercitation cillum occaecat adipisicing nostrud aliquip quis aliquip fugiat qui mollit. Laboris qui laborum laboris ut dolore officia sunt. Consequat nisi occaecat id ut pariatur anim laborum deserunt cillum ullamco aliqua. Voluptate incididunt tempor magna occaecat mollit excepteur consequat in dolor aliqua veniam duis duis consequat. Laboris duis consequat irure do incididunt incididunt nulla deserunt nisi elit do.
Dolor proident veniam laborum dolor Lorem esse amet. Exercitation laborum sunt aliqua laborum reprehenderit veniam labore cupidatat enim mollit esse pariatur magna ut. Ut incididunt proident velit amet voluptate exercitation reprehenderit. Enim ad duis eu dolor ut consectetur. Voluptate cillum in eu cillum eiusmod excepteur officia elit. Aute sit mollit do non incididunt incididunt deserunt irure velit enim enim laborum.
Explores factorisation in Principal Ideal Domains and Noetherian rings, emphasizing the integral closure concept and the factorisation of ideals in Dedekind rings.