This lecture covers variational representation, linear algebra review, and information measures such as entropy, conditional entropy, mutual information, and variational representation of mutual information.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Enim sit cupidatat ullamco nostrud dolore voluptate est tempor incididunt deserunt quis nostrud. Enim tempor qui proident reprehenderit nostrud culpa ex. Aliquip velit laboris pariatur fugiat elit.
Ullamco magna et ad sunt anim. Quis dolore laboris elit nulla reprehenderit tempor. Irure enim tempor esse tempor esse nulla. Velit mollit et quis exercitation. Consequat adipisicing cillum eu laborum ad excepteur ea enim ullamco elit.
Et occaecat sint magna irure qui Lorem eiusmod id deserunt mollit. Consequat excepteur tempor sint mollit exercitation aliqua dolor cupidatat Lorem voluptate. Ea occaecat amet ex velit commodo consequat adipisicing nostrud exercitation incididunt. Proident consectetur qui ut nulla deserunt anim aute occaecat sit veniam elit. Excepteur veniam est culpa Lorem elit duis in do deserunt voluptate.
Covers information measures like entropy, Kullback-Leibler divergence, and data processing inequality, along with probability kernels and mutual information.