This lecture covers the process of parameter estimation for spike times in neuron models, focusing on quadratic and convex optimization methods, as well as the Generalized Linear Model (GLM) and its concave error function.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores gradient descent methods for smooth convex and non-convex problems, covering iterative strategies, convergence rates, and challenges in optimization.
Covers optimization techniques in machine learning, focusing on convexity, algorithms, and their applications in ensuring efficient convergence to global minima.