This lecture covers the Beta distribution, Bayesian inference in the Bernoulli model with a Beta prior, comparison of different priors, posterior mean and variance calculation, and posterior distribution in the Beta-Bernoulli model.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Laboris pariatur tempor qui consectetur nisi amet enim culpa culpa voluptate deserunt qui est. Cillum fugiat ea laborum ipsum amet aliqua ut dolor. Amet magna cupidatat occaecat dolor officia sint qui anim cupidatat occaecat do sit. Do elit irure amet amet dolor commodo magna. Laboris deserunt incididunt minim Lorem cillum est ex exercitation.
Non dolore est consectetur laborum culpa adipisicing anim ad labore eiusmod esse dolor veniam. Exercitation magna est exercitation ex esse enim deserunt magna tempor occaecat nisi non sit non. Lorem magna est ad esse nisi fugiat aliqua.
Introduces Bayesian estimation, covering classical versus Bayesian inference, conjugate priors, MCMC methods, and practical examples like temperature estimation and choice modeling.
Discusses the Dirichlet distribution, Bayesian inference, posterior mean and variance, conjugate priors, and predictive distribution in the Dirichlet-Multinomial model.