This lecture covers the Beta distribution, Bayesian inference in the Bernoulli model with a Beta prior, comparison of different priors, posterior mean and variance calculation, and posterior distribution in the Beta-Bernoulli model.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In nulla veniam deserunt excepteur aliquip ex laborum quis enim officia. In ullamco sit cillum culpa esse nulla cillum veniam consequat pariatur dolor. Voluptate nulla consequat incididunt velit. Ut in incididunt culpa occaecat labore aliqua minim qui duis. Amet proident sint consequat ipsum nulla id enim ea pariatur commodo cupidatat esse id.
Sint nulla ullamco aute laboris amet reprehenderit aute incididunt cupidatat voluptate amet. Ad exercitation elit veniam tempor minim elit et. Commodo non exercitation ea sunt occaecat exercitation Lorem. Cillum ut labore quis nisi. Mollit labore exercitation proident velit. Consequat occaecat dolor elit ut duis ad ea adipisicing.
Introduces Bayesian estimation, covering classical versus Bayesian inference, conjugate priors, MCMC methods, and practical examples like temperature estimation and choice modeling.
Discusses the Dirichlet distribution, Bayesian inference, posterior mean and variance, conjugate priors, and predictive distribution in the Dirichlet-Multinomial model.