This lecture covers the Beta distribution, Bayesian inference in the Bernoulli model with a Beta prior, comparison of different priors, posterior mean and variance calculation, and posterior distribution in the Beta-Bernoulli model.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Magna occaecat ut cupidatat enim exercitation nisi anim consequat commodo cupidatat. Laborum minim incididunt labore consectetur Lorem. Amet pariatur in exercitation laborum laboris culpa exercitation aute ut nisi duis. Elit sint pariatur pariatur amet esse mollit. Et commodo nisi consequat quis ullamco labore aliqua et Lorem esse.
Laborum commodo quis do sit fugiat dolor nisi enim aliqua. Deserunt dolor laborum ad duis qui tempor anim aliquip irure laborum dolore et. Eiusmod ut culpa do dolore nulla esse adipisicing Lorem irure elit pariatur. Minim voluptate mollit id pariatur id culpa velit sint ad ut laborum nostrud. Commodo eu nulla quis sit minim magna do velit proident nostrud laboris laboris nulla esse.
Introduces Bayesian estimation, covering classical versus Bayesian inference, conjugate priors, MCMC methods, and practical examples like temperature estimation and choice modeling.
Discusses the Dirichlet distribution, Bayesian inference, posterior mean and variance, conjugate priors, and predictive distribution in the Dirichlet-Multinomial model.