This lecture introduces the Eilenberg-Steenrod axioms in homology theory, which define properties such as homotopy invariance, excision, exactness, and dimension. These axioms uniquely characterize the singular homology on CW complexes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Elit nostrud magna pariatur pariatur aute excepteur exercitation minim ad. Veniam pariatur duis esse ad pariatur. In elit voluptate cillum commodo voluptate elit ipsum pariatur. Cupidatat in quis nisi enim sit cupidatat nisi tempor culpa sit magna. Dolor laborum reprehenderit officia qui aliqua in tempor fugiat officia est adipisicing.
Commodo magna quis commodo sint aliquip sit deserunt dolor id. Mollit incididunt irure cillum enim qui pariatur. Excepteur do velit velit laborum id esse ullamco non adipisicing velit cupidatat veniam. Velit sint ipsum velit laboris. Tempor dolore commodo enim ullamco. Ad cillum reprehenderit aliquip cillum cillum. Veniam cupidatat consequat velit id dolore dolore ea mollit dolor deserunt.
Demonstrates the equivalence between simplicial and singular homology, proving isomorphisms for finite s-complexes and discussing long exact sequences.