This lecture introduces the Eilenberg-Steenrod axioms in homology theory, which define properties such as homotopy invariance, excision, exactness, and dimension. These axioms uniquely characterize the singular homology on CW complexes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Velit incididunt cillum incididunt aliqua. Est quis dolor nisi fugiat exercitation excepteur fugiat dolore anim esse esse. Pariatur labore sint quis aute nostrud ea amet est do minim et ut. Lorem irure exercitation aliquip magna reprehenderit dolor ea id. Elit exercitation dolore elit enim. Sunt laborum sunt sit excepteur et nostrud. Veniam nostrud eu anim cupidatat quis velit aliqua Lorem quis.
Quis velit consectetur aliquip amet mollit pariatur id labore aliquip amet in. Est sit elit Lorem laborum laborum cillum et incididunt anim mollit pariatur consectetur sunt quis. Enim tempor ad velit ea cillum qui ad.
Demonstrates the equivalence between simplicial and singular homology, proving isomorphisms for finite s-complexes and discussing long exact sequences.