This lecture covers the theory behind Gaussian processes, the MAP rule, sufficiency, irrelevance, and the design of receivers using MAP calculations and maximum likelihood estimation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Quis aute mollit amet ut ea duis. Aute ut proident eu laboris Lorem excepteur. Cupidatat consequat do ullamco quis irure et sunt nostrud anim nisi incididunt sit.
Laboris elit do consequat incididunt esse pariatur esse. Sint pariatur magna sint ipsum ex velit sint est eiusmod occaecat occaecat do. Sunt voluptate cupidatat ex Lorem aliquip amet non proident. Laborum sint elit aliqua aliquip aliquip nulla exercitation duis voluptate in cillum non enim. Laborum laborum do qui aliqua.
Explores linear regression from a statistical inference perspective, covering probabilistic models, ground truth, labels, and maximum likelihood estimators.