This lecture covers the theory behind Gaussian processes, the MAP rule, sufficiency, irrelevance, and the design of receivers using MAP calculations and maximum likelihood estimation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Id esse fugiat aliquip nostrud voluptate voluptate consequat aliquip sint. Laboris nulla eiusmod do elit est adipisicing enim. In Lorem aute do eiusmod velit.
Voluptate exercitation enim sit aliqua duis. Ad consectetur pariatur incididunt proident. Occaecat ea qui consequat aute mollit velit proident do anim veniam mollit. Reprehenderit laborum tempor minim laborum do nulla consequat minim. Proident ad incididunt cillum velit ad cupidatat ad excepteur ut duis eiusmod. Commodo culpa adipisicing laborum ad nisi pariatur voluptate deserunt officia consectetur. Ex esse aliquip dolore nostrud.
Explores linear regression from a statistical inference perspective, covering probabilistic models, ground truth, labels, and maximum likelihood estimators.