Lecture

Divergent Sequences

Description

This lecture covers the concept of divergent sequences, which are sequences that do not converge. It explains the definition of divergent sequences and provides examples, such as an = (-1), to illustrate this concept. The lecture also discusses the notion of limits at infinity and how to determine if a sequence is divergent or tends to positive or negative infinity.

In MOOCs (9)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Analyse I (partie 4) : Limite d'une fonction, fonctions continues
Limite d’une fonction et fonctions continues
Show more
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (36)
Cauchy SequencesMOOC: Analyse I
Explores Cauchy sequences in real numbers, convergence criteria, and limit definitions.
Limit of a Sequence: Reminder and Examples
Covers the concept of limit of a sequence and introduces the two gendarmes theorem.
Newton's Binomial and Real Sequences
Explores Newton's binomial theorem and real sequences with examples and definitions.
Convergence and Limits in Real Numbers
Explains convergence, limits, bounded sequences, and the Bolzano-Weierstrass theorem in real numbers.
Real Sequences: Limits and Properties
Explores real sequences, limits, convergence, divergence, and operations on limits.
Show more