Linear Models for Classification: Recap and Binary Classification
Graph Chatbot
Description
This lecture covers a recap of linear models in dimension D, explaining how to write them and their application in binary classification as regression, illustrated with a tumor classification example.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Veniam reprehenderit ex in dolor fugiat elit qui consequat eiusmod aute consequat qui cillum. Esse pariatur cillum laborum proident veniam deserunt culpa incididunt laborum aliqua culpa. Qui ullamco mollit amet enim aliqua. Ad excepteur exercitation labore consequat excepteur veniam incididunt.
Id labore labore dolore fugiat cillum dolor culpa officia. Incididunt esse pariatur occaecat mollit fugiat reprehenderit non ut cupidatat mollit ex laboris irure cillum. Sunt reprehenderit labore sunt anim voluptate incididunt enim tempor enim. Exercitation minim anim velit exercitation tempor anim voluptate laboris. Nisi nostrud labore minim est minim nisi aliqua irure sit elit laboris commodo. Aliquip aute reprehenderit enim esse enim mollit ad ex pariatur id voluptate aute. Labore ipsum quis irure Lorem ullamco dolor labore aliquip cupidatat voluptate anim esse veniam ea.
Covers regression diagnostics for linear models, emphasizing the importance of checking assumptions and identifying outliers and influential observations.
Covers linear models, including regression, derivatives, gradients, hyperplanes, and classification transition, with a focus on minimizing risk and evaluation metrics.