**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Limit of a Sequence

Description

This lecture covers the concept of the limit of a sequence, focusing on the definition and properties related to the convergence of sequences. The instructor explains the criteria for a sequence to be considered bounded, increasing, or decreasing, and provides examples to illustrate these concepts.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (164)

Related lectures (491)

Limit set

In mathematics, especially in the study of dynamical systems, a limit set is the state a dynamical system reaches after an infinite amount of time has passed, by either going forward or backwards in time. Limit sets are important because they can be used to understand the long term behavior of a dynamical system. A system that has reached its limiting set is said to be at equilibrium.

Genus–differentia definition

A genus–differentia definition is a type of intensional definition, and it is composed of two parts: a genus (or family): An existing definition that serves as a portion of the new definition; all definitions with the same genus are considered members of that genus. the differentia: The portion of the definition that is not provided by the genus. For example, consider these two definitions: a triangle: A plane figure that has 3 straight bounding sides. a quadrilateral: A plane figure that has 4 straight bounding sides.

Monotonic function

In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order theory. In calculus, a function defined on a subset of the real numbers with real values is called monotonic if and only if it is either entirely non-increasing, or entirely non-decreasing. That is, as per Fig. 1, a function that increases monotonically does not exclusively have to increase, it simply must not decrease.

Limit (mathematics)

In mathematics, a limit is the value that a function (or sequence) approaches as the input (or index) approaches some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals. The concept of a limit of a sequence is further generalized to the concept of a limit of a topological net, and is closely related to and direct limit in . In formulas, a limit of a function is usually written as (although a few authors use "Lt" instead of "lim") and is read as "the limit of f of x as x approaches c equals L".

Sequence

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position.

Convergence CriteriaMATH-101(g): Analysis I

Covers the convergence criteria for sequences, including operations on limits and sequences defined by recurrence.

Properties of Limits and ContinuityMATH-101(g): Analysis I

Covers the properties of limits and continuity of functions.

Generalized Integrals: Convergence and DivergenceMATH-101(e): Analysis I

Explores the convergence and divergence of generalized integrals using comparison methods and variable transformations.

Limits and ExamplesMATH-101(d): Analysis I

Explores the concept of limits and provides examples of their existence and non-existence in various functions.

Convergence and Limits in Real Numbers

Explains convergence, limits, bounded sequences, and the Bolzano-Weierstrass theorem in real numbers.