This lecture covers the concept of supervised learning with decision trees, explaining how to make decisions based on features to predict outcomes. It delves into information gain and entropy calculations to select the best features for classification.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Eiusmod sunt officia enim tempor quis aliquip excepteur. Laboris minim nostrud proident ex excepteur mollit. Consequat voluptate eiusmod magna eiusmod in ullamco. Pariatur consequat irure officia sunt.
Cillum minim nisi sunt consequat cillum reprehenderit minim nisi culpa consequat. Non id sint nisi reprehenderit culpa cillum. Incididunt laborum ex ea occaecat esse id nostrud voluptate et dolor cillum eu in. Enim exercitation labore anim ullamco consequat ex nulla non eiusmod anim. Sit sunt aliqua consectetur elit officia occaecat excepteur reprehenderit quis non sit.
Covers information measures like entropy, Kullback-Leibler divergence, and data processing inequality, along with probability kernels and mutual information.