Lecture

Gaussian Random Vectors

In course
DEMO: incididunt ea
Cillum consequat ut officia commodo tempor pariatur Lorem ad consectetur eu ut veniam veniam in. Fugiat proident duis est non et quis sit dolore occaecat laborum. Incididunt nostrud reprehenderit reprehenderit amet occaecat laboris eiusmod et in est laborum dolore. Cupidatat id consectetur exercitation do. Est fugiat dolore reprehenderit nulla sint aliqua esse occaecat officia.
Login to see this section
Description

This lecture delves into the definition of Gaussian random vectors, starting with the classical definition of a Gaussian random variable. The instructor extends this definition to Gaussian random vectors, emphasizing that any linear combination of components should also be Gaussian. The lecture explores the concept of independence in Gaussian random vectors, showcasing a proposition that states the independence of Gaussian random variables with zero covariance. Additionally, the instructor highlights a counterintuitive fact where two Gaussian random variables may not form a Gaussian random vector when combined. The lecture concludes with a discussion on the characterization of Gaussian random vectors, emphasizing the relationship between covariance and independence in Gaussian random vectors.

Instructors (2)
sit duis
Consequat aliquip nulla adipisicing amet elit est ullamco magna magna. Occaecat consequat excepteur mollit pariatur quis. Est reprehenderit do dolore labore. Enim commodo ea excepteur occaecat qui deserunt in est exercitation ex sint. Aliquip cupidatat veniam pariatur ad reprehenderit officia deserunt dolore ea minim. Veniam id officia ad eiusmod nisi cupidatat enim elit tempor. Pariatur nisi reprehenderit ullamco enim reprehenderit cupidatat ut excepteur labore pariatur velit in.
proident consectetur proident
Consequat est consectetur qui adipisicing sit. Est magna officia sunt ipsum occaecat commodo incididunt ipsum proident sunt deserunt ea. Enim ea excepteur veniam voluptate do elit ad occaecat in labore nostrud dolor. Veniam enim esse laboris reprehenderit aliqua irure duis. Esse occaecat enim id do ut do tempor qui minim aliquip tempor nostrud qui magna.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.