Skip to main content
Graph
Search
fr
|
en
Login
Search
All
Categories
Concepts
Courses
Lectures
MOOCs
People
Practice
Publications
Startups
Units
Show all results for
Home
Lecture
Continuous-Time Markov Chains: Reversible Chains
Graph Chatbot
Related lectures (31)
Previous
Page 2 of 4
Next
Stochastic Models: Absorbing Markov Chains Examples
Covers examples of absorbing Markov chains in discrete time.
Markov Chains: PageRank Algorithm
Explores the PageRank algorithm within Markov chains, emphasizing ergodicity and convergence for web page ranking.
Ergodic Theorem: Proof and Applications
Explains the proof of the ergodic theorem and the concept of positive-recurrence in Markov chains.
Limiting Distribution and Ergodic Theorem
Explores limiting distribution in Markov chains and the implications of ergodicity and aperiodicity on stationary distributions.
Markov Chains: Reversibility & Convergence
Covers Markov chains, focusing on reversibility, convergence, ergodicity, and applications.
Ergodic Theory: Markov Chains
Explores ergodic theory in Markov chains, discussing irreducibility and unique stationary distributions.
Invariant Measures: Properties and Applications
Covers the concept of invariant measures in Markov chains and their role in analyzing irreducible recurrent processes.
Lower Bound on Total Variation Distance
Explores the lower bound on total variation distance in Markov chains and its implications on mixing time.
Discrete-Time Markov Chains: Absorbing Chains Examples
Covers examples of absorbing chains in discrete-time Markov chains.
Markov Chains: Convergence and Spectral Gap
Explores Markov chain convergence, spectral gap, and acceleration techniques for faster convergence.