Lecture

The Class Number Formula: Counting and Lipschitz Principle

In courses (2)
DEMO: enim magna aliquip
Et nostrud adipisicing officia veniam ad est excepteur fugiat ex. Officia voluptate qui cillum aliquip cupidatat veniam nisi dolor adipisicing. Dolore duis ut ullamco consectetur sunt ut ut reprehenderit aliquip eiusmod. Id adipisicing esse aute ad aute excepteur velit anim nulla. Fugiat cillum minim nisi est id.
DEMO: dolor et
Cupidatat ea anim occaecat sit ad ut labore commodo cupidatat labore ullamco eiusmod cupidatat ullamco. Labore reprehenderit ullamco labore non cillum. Mollit laboris voluptate tempor do adipisicing nisi elit culpa minim non eiusmod culpa anim adipisicing. Do veniam sit proident sint ullamco eu incididunt. Veniam magna nulla quis et irure dolore veniam do velit sunt. Consequat Lorem Lorem tempor amet consequat aute cillum sunt deserunt excepteur. Veniam velit eu dolore irure anim.
Login to see this section
Description

This lecture covers the Class Number Formula, which relates the class number of a number field to the regulator and the discriminant. It also discusses a counting problem involving the lattice and the Lipschitz principle for Lipschitz maps in metric spaces.

Instructor
voluptate nulla culpa enim
Consequat irure enim sunt et laborum. Officia voluptate do pariatur tempor id reprehenderit nostrud ex ea. Laborum do duis dolore qui eiusmod nulla aliqua reprehenderit laborum.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (32)
Hermite-Minkowski Theorems: Number Fields and Ideal Classes
Explores Hermite-Minkowski theorems in number fields and ideal classes.
Embeddings of Number Fields
Explores embeddings of number fields, types, signatures, lattices, and determinants.
Monstrous Moonshine
Explores Monstrous Moonshine, focusing on the 1979 discovery and its mathematical connections.
Logarithmic Embedding in Number Fields
Explores the properties and applications of logarithmic embeddings in number fields.
Lipschitz Maps and Compact Domains
Covers Lipschitz maps, compact domains, changing variables, counting problems, and probability of ideals.
Show more