This lecture covers the Gram-Schmidt algorithm for orthonormal bases in vector spaces, including the proof and application of the algorithm. It also discusses the best approximation theorem and the properties of orthogonal matrices.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Occaecat quis culpa officia pariatur nisi. Aliqua excepteur labore anim laborum irure occaecat enim proident aute do labore minim. Pariatur labore do incididunt esse. Aute sint aute commodo consectetur consequat esse ut.
Fugiat esse anim dolor dolore do commodo. In aliqua aute ipsum et aliqua laboris non dolore. Ad cupidatat deserunt proident magna nostrud fugiat eu reprehenderit aliquip.