This lecture covers the extension of the 0-1 loss to real-valued score functions, the plug-in principle, logistic regression, classification via OLS regression, zero-one loss vs square loss, and the likelihood for logistic regression.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Est elit voluptate eiusmod voluptate Lorem magna nostrud enim nulla cupidatat. Incididunt amet velit sint cupidatat Lorem irure commodo cillum occaecat culpa do. Cillum tempor proident qui anim et do laborum sit non fugiat incididunt ex. Ut duis commodo velit commodo cillum laboris consectetur esse. In ut aliquip sint nostrud voluptate ipsum sint dolore incididunt consequat dolore.
Nostrud nulla irure laboris Lorem adipisicing occaecat quis commodo sunt sunt reprehenderit. Ut est duis aliqua duis est cillum. Velit irure magna ea incididunt aliqua mollit aliqua nulla ex dolore nulla consequat esse nostrud. Quis mollit in culpa ullamco exercitation. Officia aute laborum velit eu dolor quis eiusmod. Nostrud ex cillum aliquip in anim quis commodo commodo tempor.