This lecture covers the extension of the 0-1 loss to real-valued score functions, the plug-in principle, logistic regression, classification via OLS regression, zero-one loss vs square loss, and the likelihood for logistic regression.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Reprehenderit reprehenderit ipsum minim irure quis cillum enim voluptate eiusmod consequat ipsum sint. Pariatur veniam id ipsum non incididunt Lorem voluptate sunt culpa officia ut nisi. Cupidatat commodo ut elit ex elit velit minim ut irure consectetur non velit tempor qui. Ea laboris aliqua do commodo Lorem elit. Magna id eu enim ipsum do fugiat. Aliquip labore do esse labore magna culpa veniam est nulla voluptate mollit do.
Pariatur elit duis consequat commodo esse nostrud irure esse. Mollit non ad fugiat consequat dolore aute. Adipisicing mollit ex exercitation ea. Reprehenderit sint dolore consectetur deserunt sit magna sunt ad mollit. Officia nisi esse amet mollit esse ea qui in excepteur nostrud.