This lecture covers the Discrete-Time Fourier Transform (DTFT), which decomposes a signal into a weighted integral of complex exponentials, useful for analyzing stable LTI systems and generalizing Fourier Series. The instructor explains the definition, properties, and examples of DTFT, emphasizing its all-periodic nature.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Irure tempor nisi laborum proident culpa est sit fugiat nostrud non do ipsum occaecat. Qui nulla sint nulla veniam. Non amet sit magna dolor adipisicing laborum excepteur anim elit Lorem. Voluptate occaecat esse et officia. Velit minim culpa duis est incididunt incididunt. Culpa magna magna ea nisi ullamco dolore commodo in ullamco. Sunt esse Lorem aliqua laboris minim labore nisi.
Dolore deserunt labore duis est officia Lorem cillum. Esse velit deserunt laboris culpa aute ad fugiat ullamco culpa deserunt. Lorem do cillum esse culpa est ad ad aute aute esse.
Qui irure excepteur exercitation est laboris. Non aliqua in mollit commodo irure esse. Aliqua aliqua duis eu tempor cupidatat. Velit ullamco non excepteur in sunt dolor dolore ut deserunt dolor ullamco. Qui occaecat anim sit laborum nisi sunt excepteur velit deserunt consequat Lorem.
Provides a comprehensive review of signals and systems, covering topics such as time-domain analysis, frequency-domain analysis, and Fourier transform.
Covers the Fourier transform, its properties, applications in signal processing, and differential equations, emphasizing the concept of derivatives becoming multiplications in the frequency domain.
Covers the theory of numerical methods for frequency estimation on deterministic signals, including Fourier series and transform, Discrete Fourier transform, and the Sampling theorem.