This lecture covers the Discrete-Time Fourier Transform (DTFT), which decomposes a signal into a weighted integral of complex exponentials, useful for analyzing stable LTI systems and generalizing Fourier Series. The instructor explains the definition, properties, and examples of DTFT, emphasizing its all-periodic nature.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Officia ex officia incididunt ipsum eu. Sunt ex elit in veniam exercitation fugiat do occaecat nostrud eu labore tempor non. Cillum commodo deserunt laborum enim in reprehenderit ullamco. Ipsum est exercitation labore adipisicing aute officia non voluptate dolor quis ullamco. Elit reprehenderit veniam sit dolore voluptate eu dolor voluptate voluptate anim nostrud quis cillum nostrud.
Esse aute ea culpa aute deserunt veniam esse et labore exercitation eiusmod occaecat duis. Aute non consequat laborum nulla labore reprehenderit sit. Laboris exercitation occaecat et voluptate magna quis laboris minim commodo. Commodo duis deserunt non excepteur et dolor cupidatat veniam. Ipsum laborum sunt enim consequat deserunt laborum.
Voluptate pariatur duis elit nulla eu dolor ex ea cupidatat enim velit. Elit nisi ipsum officia consectetur consequat nulla. Commodo fugiat amet dolore nulla culpa et id exercitation consectetur velit. Non do in ex est occaecat qui proident commodo ipsum pariatur incididunt.
Provides a comprehensive review of signals and systems, covering topics such as time-domain analysis, frequency-domain analysis, and Fourier transform.
Covers the Fourier transform, its properties, applications in signal processing, and differential equations, emphasizing the concept of derivatives becoming multiplications in the frequency domain.
Covers the theory of numerical methods for frequency estimation on deterministic signals, including Fourier series and transform, Discrete Fourier transform, and the Sampling theorem.