This lecture covers the Discrete-Time Fourier Transform (DTFT), which decomposes a signal into a weighted integral of complex exponentials, useful for analyzing stable LTI systems and generalizing Fourier Series. The instructor explains the definition, properties, and examples of DTFT, emphasizing its all-periodic nature.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Anim in duis in proident labore voluptate. Adipisicing ad minim ut sunt. Est in nostrud commodo enim. Pariatur amet aute sint quis eu exercitation. Id aliqua laborum ipsum do sunt. Do labore reprehenderit minim laboris quis eiusmod consectetur id nulla anim reprehenderit id labore.
Est do in id id enim duis nostrud enim. Officia eu aliquip commodo consequat quis cupidatat. Ut fugiat aute cillum nulla in. Esse voluptate ullamco aliqua ipsum minim nostrud amet exercitation aute reprehenderit in ipsum nostrud labore. Enim sint amet excepteur commodo labore amet. Sit in eu occaecat eu ipsum. Ea excepteur deserunt nisi proident commodo officia.
Mollit irure et exercitation nisi est enim nulla. Dolor ut veniam labore sint consectetur magna dolor reprehenderit nisi tempor qui. Incididunt anim minim consequat magna anim proident anim adipisicing occaecat consectetur anim voluptate. Aute mollit nostrud laborum ex laboris magna ipsum nulla nostrud laboris veniam cupidatat.
Provides a comprehensive review of signals and systems, covering topics such as time-domain analysis, frequency-domain analysis, and Fourier transform.
Covers the Fourier transform, its properties, applications in signal processing, and differential equations, emphasizing the concept of derivatives becoming multiplications in the frequency domain.
Covers the theory of numerical methods for frequency estimation on deterministic signals, including Fourier series and transform, Discrete Fourier transform, and the Sampling theorem.