**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Polynomial Interpolation in 3D Space

Description

This lecture covers the topic of polynomial interpolation in 3D space, focusing on determining coefficients and bases for interpolation. The instructor explains the process step by step, illustrating with examples and calculations. The lecture also discusses changing bases and solving for unknowns in polynomial equations.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In MOOCs (9)

Instructor

Related concepts (25)

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 3)Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Related lectures (109)

In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset. Given a set of n + 1 data points , with no two the same, a polynomial function is said to interpolate the data if for each . There is always a unique such polynomial, commonly given by two explicit formulas, the Lagrange polynomials and Newton polynomials.

In the mathematical field of numerical analysis, interpolation is a type of estimation, a method of constructing (finding) new data points based on the range of a discrete set of known data points. In engineering and science, one often has a number of data points, obtained by sampling or experimentation, which represent the values of a function for a limited number of values of the independent variable. It is often required to interpolate; that is, estimate the value of that function for an intermediate value of the independent variable.

In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of data. Given a data set of coordinate pairs with the are called nodes and the are called values. The Lagrange polynomial has degree and assumes each value at the corresponding node, Although named after Joseph-Louis Lagrange, who published it in 1795, the method was first discovered in 1779 by Edward Waring. It is also an easy consequence of a formula published in 1783 by Leonhard Euler.

In mathematics, trigonometric interpolation is interpolation with trigonometric polynomials. Interpolation is the process of finding a function which goes through some given data points. For trigonometric interpolation, this function has to be a trigonometric polynomial, that is, a sum of sines and cosines of given periods. This form is especially suited for interpolation of periodic functions. An important special case is when the given data points are equally spaced, in which case the solution is given by the discrete Fourier transform.

In numerical analysis, Hermite interpolation, named after Charles Hermite, is a method of polynomial interpolation, which generalizes Lagrange interpolation. Lagrange interpolation allows computing a polynomial of degree less than n that takes the same value at n given points as a given function. Instead, Hermite interpolation computes a polynomial of degree less than mn such that the polynomial and its m − 1 first derivatives have the same values at n given points as a given function and its m − 1 first derivatives.

Interpolation of FunctionsMATH-251(c): Numerical analysis

Explores Lagrange interpolation, error analysis, and piecewise linear interpolation.

The Wrong Method: Polynomial InterpolationMOOC: Numerical Analysis for Engineers

Explores the inefficiencies of the incorrect method for polynomial interpolation.

Nonlinear Equations: Interpolation and Error AnalysisMATH-250: Numerical analysis

Covers the interpolation of nonlinear functions using Lagrange polynomials and error analysis.

Error Analysis and InterpolationMATH-251(a): Numerical analysis

Explores error analysis and limitations in interpolation on evenly distributed nodes.

Gauss-Legendre Quadrature Formulas

Explores Gauss-Legendre quadrature formulas using Legendre polynomials for accurate function approximation.