**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Limit Theorems: Sequences and Series

Description

This lecture covers the limit theorems for sequences and series, including the Two Gendarmes Theorem, the convergence and divergence of geometric series, and the application of D'Alembert's criterion. It also addresses indeterminate forms and provides examples to illustrate the concepts.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

Related concepts (76)

MATH-101(e): Analysis I

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.

In mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute convergence, interval of convergence or divergence of an infinite series . If the limit of the summand is undefined or nonzero, that is , then the series must diverge. In this sense, the partial sums are Cauchy only if this limit exists and is equal to zero. The test is inconclusive if the limit of the summand is zero. This is also known as the nth-term test, test for divergence, or the divergence test.

In mathematics, an infinite series of numbers is said to converge absolutely (or to be absolutely convergent) if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if Absolute convergence is important for the study of infinite series because its definition is strong enough to have properties of finite sums that not all convergent series possess – a convergent series that is not absolutely convergent is called conditionally convergent, while absolutely convergent series behave "nicely".

In mathematics, the radius of convergence of a power series is the radius of the largest disk at the center of the series in which the series converges. It is either a non-negative real number or . When it is positive, the power series converges absolutely and uniformly on compact sets inside the open disk of radius equal to the radius of convergence, and it is the Taylor series of the analytic function to which it converges.

In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted The nth partial sum Sn is the sum of the first n terms of the sequence; that is, A series is convergent (or converges) if the sequence of its partial sums tends to a limit; that means that, when adding one after the other in the order given by the indices, one gets partial sums that become closer and closer to a given number.

In mathematics, the ratio test is a test (or "criterion") for the convergence of a series where each term is a real or complex number and an is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test. The usual form of the test makes use of the limit The ratio test states that: if L < 1 then the series converges absolutely; if L > 1 then the series diverges; if L = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.

Related lectures (74)

Convergence CriteriaMATH-101(g): Analysis I

Covers the convergence criteria for sequences, including operations on limits and sequences defined by recurrence.

Taylor Series: Basics and ApplicationsMATH-101(e): Analysis I

Covers the basics of Taylor series and their applications in calculating limits.

Convergence of SeriesMATH-101(g): Analysis I

Covers the convergence criteria of series, including alternating series and absolute convergence.

Generalized Integrals: Convergence and DivergenceMATH-101(e): Analysis I

Explores the convergence and divergence of generalized integrals using comparison methods and variable transformations.

Sequences and ConvergenceMATH-101(g): Analysis I

Explores sequences, convergence criteria, and accumulation points in sequences.