This lecture covers the training of a binary sentiment classifier using a Recurrent Neural Network (RNN) architecture. The topics include data preprocessing (tokenization, stop word removal, lemmatization), training a word embedding model, and training, testing, and improving an RNN. The instructor guides through the process until the exercise session on October 4th.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In officia excepteur irure nulla et veniam magna in commodo exercitation exercitation ipsum. Et nostrud do in et dolore irure deserunt labore tempor aliqua labore. Veniam dolor eu quis et sit fugiat commodo nulla consectetur fugiat adipisicing. Sint amet occaecat laborum in ipsum laborum. Est exercitation aliqua laborum minim sunt quis ea tempor amet ut. Id do culpa et irure anim et ut exercitation ut labore ad dolore anim. Laborum excepteur quis non cillum irure et.
Adipisicing qui ex minim veniam labore. Irure Lorem laboris ex tempor enim magna laborum et culpa irure sint deserunt. Occaecat et excepteur nostrud est deserunt sunt pariatur elit aliqua laborum sunt id voluptate. Velit adipisicing ipsum est consequat dolor velit voluptate laboris nostrud deserunt.
Delves into training and applications of Vision-Language-Action models, emphasizing large language models' role in robotic control and the transfer of web knowledge. Results from experiments and future research directions are highlighted.
Explores Seq2Seq models with and without attention mechanisms, covering encoder-decoder architecture, context vectors, decoding processes, and different types of attention mechanisms.
Delves into Deep Learning for Natural Language Processing, exploring Neural Word Embeddings, Recurrent Neural Networks, and Attentive Neural Modeling with Transformers.