**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Architectural Transformations: Design Space Exploration

Description

This lecture covers various architectural transformations in digital system design, such as iterative decomposition, loop unrolling, resource sharing, replication, pipelining, and retiming. These transformations optimize area, time per data item, and the AT product, allowing designers to move around the design space efficiently.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

EE-334: Digital systems design

Students will acquire basic knowledge about methodologies and tools for the design, optimization, and verification of custom digital systems/hardware.
They learn how to design synchronous digital cir

Related concepts (44)

Singular value decomposition

In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any matrix. It is related to the polar decomposition. Specifically, the singular value decomposition of an complex matrix M is a factorization of the form where U is an complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, V is an complex unitary matrix, and is the conjugate transpose of V.

LU decomposition

In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix decomposition). The product sometimes includes a permutation matrix as well. LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix.

QR decomposition

In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthonormal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares problem and is the basis for a particular eigenvalue algorithm, the QR algorithm. Any real square matrix A may be decomposed as where Q is an orthogonal matrix (its columns are orthogonal unit vectors meaning ) and R is an upper triangular matrix (also called right triangular matrix).

Polar decomposition

In mathematics, the polar decomposition of a square real or complex matrix is a factorization of the form , where is a unitary matrix and is a positive semi-definite Hermitian matrix ( is an orthogonal matrix and is a positive semi-definite symmetric matrix in the real case), both square and of the same size. Intuitively, if a real matrix is interpreted as a linear transformation of -dimensional space , the polar decomposition separates it into a rotation or reflection of , and a scaling of the space along a set of orthogonal axes.

Cholesky decomposition

In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced ʃəˈlɛski ) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations. It was discovered by André-Louis Cholesky for real matrices, and posthumously published in 1924. When it is applicable, the Cholesky decomposition is roughly twice as efficient as the LU decomposition for solving systems of linear equations.

Related lectures (34)

Harmonic Forms and Riemann SurfacesMATH-680: Monstrous moonshine

Explores harmonic forms on Riemann surfaces, covering uniqueness of solutions and the Riemann bilinear identity.

Harmonic Forms: Main TheoremMATH-410: Riemann surfaces

Explores harmonic forms on Riemann surfaces and the uniqueness of solutions to harmonic equations.

Advanced Physics I: Definitions and MotionPHYS-100: Advanced physics I (mechanics)

Covers advanced physics topics such as definitions, rectilinear motion, vectors, and motion in three dimensions.

Singular Value Decomposition: Theoretical FoundationsMATH-111(e): Linear Algebra

Covers the theoretical foundations of Singular Value Decomposition, explaining the decomposition of a matrix into singular values and vectors.

Orthogonal Projections and Reflections

Covers the analytical expression of orthogonal projections and reflections in 2D space.