**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Matrix Inversion

Description

This lecture covers the concept of matrix inversion, including the conditions for a matrix to be invertible, the formula for a 2x2 matrix, the uniqueness of the inverse, the utility of the inverse, and the use of elementary matrices for inversion. It also discusses LU decomposition, determinant calculation, and the properties of invertible matrices. The lecture concludes with the equivalence of various properties related to invertibility and matrix factorizations.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (59)

Invertible matrix

In linear algebra, an n-by-n square matrix A is called invertible (also nonsingular, nondegenerate or (rarely used) regular), if there exists an n-by-n square matrix B such that where In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A−1. Matrix inversion is the process of finding the matrix B that satisfies the prior equation for a given invertible matrix A.

Rotation matrix

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system. To perform the rotation on a plane point with standard coordinates v = (x, y), it should be written as a column vector, and multiplied by the matrix R: If x and y are the endpoint coordinates of a vector, where x is cosine and y is sine, then the above equations become the trigonometric summation angle formulae.

Diagonal matrix

In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is , while an example of a 3×3 diagonal matrix is. An identity matrix of any size, or any multiple of it (a scalar matrix), is a diagonal matrix. A diagonal matrix is sometimes called a scaling matrix, since matrix multiplication with it results in changing scale (size).

Matrix decomposition

In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.

Matrix exponential

In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by eX or exp(X), is the n×n matrix given by the power series where is defined to be the identity matrix with the same dimensions as .

Related lectures (142)

Matrix Operations: Inverse and Reduction to Echelon FormMATH-111(e): Linear Algebra

Covers matrix operations and reduction to echelon form with practical examples.

Matrix Powers and Inverse: Examples and ApplicationsMATH-111(c): Linear Algebra

Covers examples of symmetric and anti-symmetric matrices, matrix powers, and the concept of matrix inverse.

Characterization of Invertible Matrices

Explores the properties of invertible matrices, including unique solutions and linear independence.

Singular Value Decomposition: Theoretical FoundationsMATH-111(e): Linear Algebra

Covers the theoretical foundations of Singular Value Decomposition, explaining the decomposition of a matrix into singular values and vectors.

Characteristic Polynomials and Similar MatricesMATH-111(e): Linear Algebra

Explores characteristic polynomials, similarity of matrices, and eigenvalues in linear transformations.