Lecture

O-Notation, Local Extrema

In course
DEMO: in incididunt veniam
Amet laboris consequat fugiat amet ea aute nostrud ullamco amet. Nulla dolor excepteur occaecat deserunt sunt do Lorem Lorem nostrud quis nisi. Ex officia nostrud sunt adipisicing commodo irure irure veniam adipisicing deserunt consequat. Sit mollit veniam cupidatat in voluptate culpa id amet et magna excepteur nostrud laborum. Ipsum quis magna nisi excepteur Lorem. Dolore aute pariatur commodo esse.
Login to see this section
Description

This lecture covers the concepts of O-Notation, local extrema, and the Mean Value Theorem. It explains the notation for bounding functions, matrix multiplication, and critical points. The lecture also discusses examples of functions with local extrema and how to determine critical points.

Instructors (2)
et aute elit in
Minim esse voluptate tempor velit ex eiusmod qui sit ex. Proident reprehenderit proident enim aliqua do culpa duis esse. Ullamco proident proident proident magna. Laboris nisi aute ea sunt cupidatat ut ut eu voluptate. Laborum sunt cupidatat ea esse mollit Lorem. Lorem reprehenderit ut occaecat non velit. Et Lorem aliquip adipisicing non non est esse.
eiusmod ad reprehenderit
Minim consequat do pariatur pariatur esse nostrud ea adipisicing ex in. Cillum sit magna aute nisi deserunt quis ea excepteur occaecat. Voluptate id enim laboris duis magna dolor. Dolore reprehenderit et tempor anim voluptate irure officia et incididunt esse. Commodo sit fugiat voluptate proident do et minim culpa enim aliqua ullamco qui tempor. Sunt aute eiusmod adipisicing ad culpa mollit dolor. Id ullamco proident ad deserunt exercitation consequat ipsum laboris nostrud reprehenderit.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (39)
Mean Value Theorem (Mittelwertsatz)
Covers the Mean Value Theorem in differential calculus, focusing on critical points and global extrema within intervals.
Eigenstate Thermalization Hypothesis
Explores the Eigenstate Thermalization Hypothesis in quantum systems, emphasizing the random matrix theory and the behavior of observables in thermal equilibrium.
Derivatives, O-Notation
Explores derivatives, O-Notation, extrema, and algorithm complexity in Analysis 1.
Introduction to Quantum Chaos
Covers the introduction to Quantum Chaos, classical chaos, sensitivity to initial conditions, ergodicity, and Lyapunov exponents.
Linear Transformations: Matrices and Applications
Explores linear transformations, matrices, injective, surjective, and bijective properties, matrix operations, and special matrix types.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.