**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Orthogonality and Projections

Description

This lecture covers the concept of orthogonality between vectors, demonstrating how to compute inner products and projections onto a given space. Through a series of calculations, the instructor shows how to decompose vectors into orthogonal components and compute projections onto specific subspaces.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

MATH-111(e): Linear Algebra

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.

Related concepts (24)

QR decomposition

In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthonormal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares problem and is the basis for a particular eigenvalue algorithm, the QR algorithm. Any real square matrix A may be decomposed as where Q is an orthogonal matrix (its columns are orthogonal unit vectors meaning ) and R is an upper triangular matrix (also called right triangular matrix).

LU decomposition

In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix decomposition). The product sometimes includes a permutation matrix as well. LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix.

Cholesky decomposition

In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced ʃəˈlɛski ) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations. It was discovered by André-Louis Cholesky for real matrices, and posthumously published in 1924. When it is applicable, the Cholesky decomposition is roughly twice as efficient as the LU decomposition for solving systems of linear equations.

Euclidean vector

In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Vectors can be added to other vectors according to vector algebra. A Euclidean vector is frequently represented by a directed line segment, or graphically as an arrow connecting an initial point A with a terminal point B, and denoted by . A vector is what is needed to "carry" the point A to the point B; the Latin word vector means "carrier".

Inner product space

In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates.

Related lectures (352)

Singular Value Decomposition: Theoretical FoundationsMATH-111(e): Linear Algebra

Covers the theoretical foundations of Singular Value Decomposition, explaining the decomposition of a matrix into singular values and vectors.

Orthogonal Complement and Projection TheoremsMATH-111(e): Linear Algebra

Explores orthogonal complement and projection theorems in vector spaces.

Vector Calculus in 3D

Covers the concept of 3D vector space, scalar product, bases, orthogonality, and projections.

Orthogonality and Projection

Covers orthogonality, scalar products, orthogonal bases, and vector projection in detail.

Advanced Physics I: Definitions and MotionPHYS-100: Advanced physics I (mechanics)

Covers advanced physics topics such as definitions, rectilinear motion, vectors, and motion in three dimensions.