**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Mapping Cones and Fiber Sequences

Description

This lecture covers the construction of mapping cones and fiber sequences, demonstrating how to extend maps from suspensions to cones and cylinders. The instructor explains the process of collapsing cones and mapping spaces, illustrating the concept of homotopy equivalence and exact sequences. The lecture delves into the duality between mapping cones and mapping fibers, showcasing the relationship between loops and evaluation maps. Through a series of examples and diagrams, the instructor elucidates the theory behind mapping spaces and their role in homotopy theory.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

Related concepts (17)

MATH-497: Homotopy theory

We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen

In mathematics, especially homotopy theory, the homotopy fiber (sometimes called the mapping fiber) is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces . It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groupsMoreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished trianglegives a long exact sequence analogous to the long exact sequence of homotopy groups.

In mathematics, specifically algebraic topology, the mapping cylinder of a continuous function between topological spaces and is the quotient where the denotes the disjoint union, and ∼ is the equivalence relation generated by That is, the mapping cylinder is obtained by gluing one end of to via the map . Notice that the "top" of the cylinder is homeomorphic to , while the "bottom" is the space . It is common to write for , and to use the notation or for the mapping cylinder construction.

In mathematics, especially homotopy theory, the mapping cone is a construction of topology, analogous to a quotient space. It is also called the homotopy cofiber, and also notated . Its dual, a fibration, is called the mapping fibre. The mapping cone can be understood to be a mapping cylinder , with one end of the cylinder collapsed to a point. Thus, mapping cones are frequently applied in the homotopy theory of pointed spaces. Given a map , the mapping cone is defined to be the quotient space of the mapping cylinder with respect to the equivalence relation , .

In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and (specifically the study of ). In homotopy theory and algebraic topology, the word "space" denotes a topological space.

In mathematics, the Puppe sequence is a construction of homotopy theory, so named after Dieter Puppe. It comes in two forms: a long exact sequence, built from the mapping fibre (a fibration), and a long coexact sequence, built from the mapping cone (which is a cofibration). Intuitively, the Puppe sequence allows us to think of homology theory as a functor that takes spaces to long-exact sequences of groups. It is also useful as a tool to build long exact sequences of relative homotopy groups.