**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Linear Algebra: Matrix Representation

Description

This lecture covers the concept of linear applications in R², focusing on matrix representation. It explains the basis of R², matrix operations, and the geometric interpretation of linear transformations. The lecture also delves into the decomposition of vectors, canonical bases, and the determination of determinants, traces, and ranks.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (182)

Complement graph

In the mathematical field of graph theory, the complement or inverse of a graph G is a graph H on the same vertices such that two distinct vertices of H are adjacent if and only if they are not adjacent in G. That is, to generate the complement of a graph, one fills in all the missing edges required to form a complete graph, and removes all the edges that were previously there. The complement is not the set complement of the graph; only the edges are complemented. Let G = (V, E) be a simple graph and let K consist of all 2-element subsets of V.

Petersen graph

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring. Although the graph is generally credited to Petersen, it had in fact first appeared 12 years earlier, in a paper by .

Lattice graph

In graph theory, a lattice graph, mesh graph, or grid graph is a graph whose drawing, embedded in some Euclidean space \mathbb{R}^n, forms a regular tiling. This implies that the group of bijective transformations that send the graph to itself is a lattice in the group-theoretical sense. Typically, no clear distinction is made between such a graph in the more abstract sense of graph theory, and its drawing in space (often the plane or 3D space). This type of graph may more shortly be called just a lattice, mesh, or grid.

Directed graph

In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. In formal terms, a directed graph is an ordered pair where V is a set whose elements are called vertices, nodes, or points; A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines.

Planar graph

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

Related lectures (1,000)

Linear Algebra: Matrices and Linear Applications

Covers matrices, linear applications, vector spaces, and bijective functions.

Vector Algebra: Scalar Product

Explores the scalar product of vectors, including properties and calculation methods.

Linear Transformations: Matrices and Kernels

Covers linear transformations, matrices, kernels, and properties of invertible matrices.

Projections and Symmetries

Explores projections on lines and symmetries in 2D space, emphasizing fixed points and symmetric matrices.

Vector Spaces: Operations and Linear Transformations

Explores vector space operations, linear transformations, matrix representation, and linear applications.