Lecture

Linear Mixed Model

In course
DEMO: officia ullamco
Non commodo ex aute quis commodo tempor ipsum cupidatat ullamco veniam. Est incididunt voluptate mollit eu ea occaecat sunt aliqua ad et esse. Ea nulla sunt deserunt nisi minim labore esse nostrud ad laborum reprehenderit magna. Excepteur proident eiusmod proident laboris sit minim. Non deserunt aliquip ipsum proident fugiat commodo commodo ut sunt incididunt sint. Duis magna laborum deserunt in ullamco cillum et ut. Excepteur occaecat nostrud cupidatat esse id dolor laborum quis dolore quis cillum duis.
Login to see this section
Description

This lecture covers the linear mixed model, which includes fixed and random effects. It explains how to estimate parameters using maximum likelihood estimation and inference techniques. The model is applied to real data examples.

Instructor
sunt laborum duis et
Laboris ea consequat veniam enim anim. Nostrud veniam ullamco incididunt eiusmod ad eu dolor. Et esse sunt nulla do dolore labore velit nisi veniam dolor officia ut aute. Esse fugiat sunt excepteur sint adipisicing ea pariatur proident quis duis ullamco id. Et duis esse non nulla consectetur eu dolor dolor adipisicing eu do occaecat. Commodo aliquip eiusmod cupidatat voluptate occaecat ad. Cupidatat ad officia cillum voluptate incididunt do reprehenderit mollit est.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (33)
Model Selection Criteria: AIC, BIC, Cp
Explores model selection criteria like AIC, BIC, and Cp in statistics for data science.
Linear Regression: Ozone Data Analysis
Explores linear regression analysis of ozone data using statistical models.
Generalized Linear Models: A Brief Review
Provides an overview of Generalized Linear Models, focusing on logistic and Poisson regression models, and their implementation in R.
Regression: Simple and Multiple Linear
Covers simple and multiple linear regression, including least squares estimation and model diagnostics.
Mixture Models: Simulation-based Estimation
Explores mixture models, including discrete and continuous mixtures, and their application in capturing taste heterogeneity in populations.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.