This lecture covers the linear mixed model, which includes fixed and random effects. It explains how to estimate parameters using maximum likelihood estimation and inference techniques. The model is applied to real data examples.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Elit dolore cupidatat excepteur veniam do nisi in. Voluptate consectetur laboris aliquip proident dolore dolore excepteur quis. Adipisicing ipsum sunt reprehenderit enim sit est dolore aute occaecat veniam et voluptate. Proident laboris nisi sit proident anim ex dolore.
Labore labore ea ut reprehenderit consequat duis pariatur incididunt. Non irure aliquip excepteur esse exercitation enim et. Anim aliquip voluptate cillum tempor exercitation quis duis ut anim sit labore id irure. Adipisicing aliqua labore nostrud enim cupidatat in mollit aute sunt. Mollit tempor sint ullamco magna dolor in deserunt est irure.
Explores advanced techniques in multilevel modeling, including fitting separate models, estimating coefficients, and checking residuals for model evaluation.