Lecture

Latent Factor Analysis: Movie Genre Classification

In course
DEMO: ad irure
Sit cillum ullamco cupidatat labore et et. In culpa reprehenderit voluptate et sit duis officia magna anim aliqua reprehenderit eu sunt veniam. Nisi enim ea ex nisi Lorem. Incididunt occaecat amet cupidatat ullamco nulla anim commodo occaecat irure. Magna veniam dolor ea cillum ea irure consequat ad ut. Proident ipsum nisi fugiat voluptate nostrud laboris consequat occaecat consequat.
Login to see this section
Description

This lecture introduces the concept of latent factor analysis for movie genre classification, using a matrix decomposition approach to represent movies in a two-dimensional space based on male versus female leads. By analyzing factor vectors, distinct genres such as movies with strong female leads, fraternity humor, and quirky independent films are identified.

Instructors (2)
aliquip ea
Dolore nostrud sunt Lorem commodo occaecat ullamco laboris voluptate in ea consequat nisi. Nulla est sint mollit qui. Est laboris quis veniam cupidatat laborum commodo nisi aute sunt.
enim fugiat est occaecat
Veniam et commodo sit voluptate do quis ad commodo eu. Esse consequat aute in deserunt et reprehenderit enim duis laborum sint. Reprehenderit duis tempor ut cupidatat laborum ea ut ex ullamco officia incididunt aliqua ex. Laboris cupidatat excepteur enim sint excepteur elit eiusmod esse occaecat elit qui.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (48)
Matrix Factorizations: SVD and PCA
Explores matrix factorizations like SVD and PCA, used in machine learning to find latent features in data, such as predicting user ratings for movies.
Singular Value Decomposition: Theoretical Foundations
Covers the theoretical foundations of Singular Value Decomposition, explaining the decomposition of a matrix into singular values and vectors.
Clustering: k-means
Explains k-means clustering, assigning data points to clusters based on proximity and minimizing squared distances within clusters.
Unsupervised Learning: Clustering & Dimensionality Reduction
Introduces unsupervised learning through clustering with K-means and dimensionality reduction using PCA, along with practical examples.
Unsupervised Learning: Movie Recommendation
Covers unsupervised learning for movie recommendation using singular value decomposition.
Show more