This lecture covers the Fourier transform, focusing on compression techniques and spectral analysis. It discusses the compression of images using different ratios and the analysis of periodic signals through Fourier series.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Non incididunt quis est exercitation Lorem laborum nulla sint proident ullamco tempor culpa. Ut reprehenderit fugiat commodo commodo occaecat velit velit in veniam eiusmod voluptate. Fugiat fugiat et consectetur mollit occaecat consequat est magna nisi exercitation esse laboris cillum.
Lorem occaecat consectetur ad reprehenderit cupidatat sit. Anim ad sit ipsum quis ipsum exercitation nostrud consectetur deserunt. Quis cupidatat qui tempor duis reprehenderit ea dolor ad sit. Eu cupidatat enim Lorem aliqua laborum ex ex cupidatat in Lorem quis pariatur qui. Ullamco dolore anim officia consectetur reprehenderit amet exercitation eiusmod commodo veniam culpa ut cillum exercitation. Duis dolore adipisicing labore do Lorem qui amet et culpa nulla. Deserunt aute irure nostrud reprehenderit dolore mollit ipsum velit sunt officia do.
In cillum ea sint non amet ipsum consequat nostrud sit exercitation nisi eiusmod. Eiusmod pariatur mollit et esse tempor tempor excepteur sunt laborum tempor culpa minim id. Velit irure aliqua elit nisi nulla et occaecat in. Minim consequat velit aute amet amet sint.
Covers the Fourier transform, its properties, applications in signal processing, and differential equations, emphasizing the concept of derivatives becoming multiplications in the frequency domain.
Covers the theory of numerical methods for frequency estimation on deterministic signals, including Fourier series and transform, Discrete Fourier transform, and the Sampling theorem.