Covers a review of machine learning concepts, including supervised learning, classification vs regression, linear models, kernel functions, support vector machines, dimensionality reduction, deep generative models, and cross-validation.
Covers CNNs, RNNs, SVMs, and supervised learning methods, emphasizing the importance of tuning regularization and making informed decisions in machine learning.
Delves into the intersection of physics and data in machine learning models, covering topics like atomic cluster expansion force fields and unsupervised learning.