This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Excepteur sunt esse incididunt nostrud nostrud deserunt anim sint. Irure nisi adipisicing duis exercitation est deserunt minim id anim. Sit duis Lorem ut eu nisi reprehenderit irure in sunt ex reprehenderit.
Delves into Deep Learning for Natural Language Processing, exploring Neural Word Embeddings, Recurrent Neural Networks, and Attentive Neural Modeling with Transformers.
Explores deep learning for NLP, covering word embeddings, context representations, learning techniques, and challenges like vanishing gradients and ethical considerations.
Delves into training and applications of Vision-Language-Action models, emphasizing large language models' role in robotic control and the transfer of web knowledge. Results from experiments and future research directions are highlighted.