**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Matrix Transformation: Base Change

Description

This lecture covers the concept of matrix transformation in different bases, focusing on how to find the matrix of a linear transformation in a new base. The instructor explains the process step by step, using examples to illustrate the calculations and the resulting matrices.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

MATH-111(pi): Linear algebra (flipped classroom)

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications. Cette classe pilote est donné sous forme inversée.

Related concepts (19)

Transformation matrix

In linear algebra, linear transformations can be represented by matrices. If is a linear transformation mapping to and is a column vector with entries, then for some matrix , called the transformation matrix of . Note that has rows and columns, whereas the transformation is from to . There are alternative expressions of transformation matrices involving row vectors that are preferred by some authors. Matrices allow arbitrary linear transformations to be displayed in a consistent format, suitable for computation.

Affine transformation

In Euclidean geometry, an affine transformation or affinity (from the Latin, affinis, "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments.

Linear map

In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a .

Invertible matrix

In linear algebra, an n-by-n square matrix A is called invertible (also nonsingular, nondegenerate or (rarely used) regular), if there exists an n-by-n square matrix B such that where In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A−1. Matrix inversion is the process of finding the matrix B that satisfies the prior equation for a given invertible matrix A.

Linear algebra

Linear algebra is the branch of mathematics concerning linear equations such as: linear maps such as: and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions.

Related lectures (349)

Change of Basis: MotivationMOOC: Algebra (part 1)

Explores the motivation behind change of basis in linear algebra, emphasizing the importance of selecting the right basis.

Rotations (2D): Definitions and Analytical Expressions

Covers the concept of 2D rotations and their analytical expressions.

Hermite Normal FormMATH-115(a): Advanced linear algebra II

Covers the Hermite Normal Form, a method to transform a matrix into a specific form.

Linear Transformations: Injective and Surjective

Explores injective and surjective linear transformations, kernel, image, and matrix operations.

Linear Algebra: Linear Transformations and Matrices

Explores linear transformations, matrices, kernels, and images in algebra.