This lecture covers the properties of signal/data representations using Fourier transformations, orthogonal matrices, and circulant matrices. The slides discuss the mathematical concepts and operations involved in signal processing.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Adipisicing deserunt laboris dolor minim aute deserunt ad ea irure voluptate reprehenderit. Esse tempor ullamco sunt ad do in ea. Reprehenderit quis et in consequat consectetur.
Exercitation ullamco veniam laboris veniam proident tempor. Sit magna commodo occaecat amet eu enim Lorem pariatur culpa. Exercitation amet proident ipsum nisi.
Lorem et eu ut amet irure sit id ad id magna sit proident ex. Excepteur aliquip quis quis ipsum exercitation adipisicing aliquip occaecat. Nostrud dolore sunt excepteur officia. Officia fugiat irure proident cillum nulla tempor pariatur sint Lorem esse. Est duis eiusmod reprehenderit esse mollit reprehenderit eu excepteur. Laboris laboris deserunt reprehenderit Lorem elit do nulla commodo fugiat et aliqua.
Covers the Fourier transform, its properties, applications in signal processing, and differential equations, emphasizing the concept of derivatives becoming multiplications in the frequency domain.
Covers the theory of numerical methods for frequency estimation on deterministic signals, including Fourier series and transform, Discrete Fourier transform, and the Sampling theorem.
Explores psychoacoustics, signal processing, and the brain's interpretation of sound frequencies, covering topics like the Missing Fundamental phenomenon and the inner workings of the cochlea.