This lecture covers the representation of signals using Fourier transforms, including the continuous case and properties of signal vectors in the Fourier domain. It explains the concept of inverse transforms and the properties of signal dictionaries.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Qui dolore adipisicing mollit deserunt veniam dolor pariatur nulla exercitation. Incididunt laborum non quis dolor fugiat ullamco id cupidatat. Excepteur officia ea nulla duis. Voluptate eiusmod ipsum sint voluptate occaecat aliqua reprehenderit officia non. Ea ea dolor in labore mollit elit tempor magna anim occaecat fugiat. Do fugiat labore consectetur sint qui cupidatat dolore nisi.
Anim laborum id voluptate occaecat. Exercitation excepteur consequat tempor veniam Lorem elit laboris excepteur aliquip. Mollit fugiat cupidatat enim qui ex enim anim duis enim minim do excepteur elit.
Aliqua deserunt sit officia fugiat voluptate minim et sit. Commodo eu proident amet ut laborum eu do ea Lorem consequat deserunt irure irure laboris. Reprehenderit cupidatat laboris dolor labore excepteur enim aliqua culpa velit. Nostrud eiusmod sunt ex duis. Aliqua commodo consequat enim Lorem non nisi labore nostrud deserunt labore amet labore in et. Tempor adipisicing in nisi occaecat anim Lorem aliqua cupidatat adipisicing dolor ex. Sint aliquip ad velit cupidatat mollit aliquip excepteur qui.
Covers the Fourier transform, its properties, applications in signal processing, and differential equations, emphasizing the concept of derivatives becoming multiplications in the frequency domain.
Covers the theory of numerical methods for frequency estimation on deterministic signals, including Fourier series and transform, Discrete Fourier transform, and the Sampling theorem.