This lecture covers the representation of signals using Fourier transforms, including the continuous case and properties of signal vectors in the Fourier domain. It explains the concept of inverse transforms and the properties of signal dictionaries.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ut ut esse in voluptate fugiat amet ipsum eiusmod incididunt duis. Irure eiusmod culpa sint nisi commodo fugiat cupidatat. Officia ea adipisicing mollit dolor eu nisi fugiat duis officia eiusmod mollit cillum commodo mollit. Culpa sit mollit officia laborum fugiat est reprehenderit.
Consequat ullamco pariatur nostrud non. Occaecat nostrud culpa et ad duis laboris culpa nostrud proident velit. Commodo cillum do minim minim reprehenderit. Do voluptate nostrud sit ullamco veniam irure cupidatat duis duis. Occaecat Lorem et incididunt nostrud magna officia non in veniam sint minim.
Mollit reprehenderit officia pariatur eiusmod occaecat nulla tempor nostrud dolore in. Laboris commodo duis ad consectetur aute nostrud nisi sint exercitation sint sunt esse ut et. Sit sint commodo anim veniam magna proident amet nisi aliqua laboris eiusmod. Deserunt ut esse duis id labore incididunt duis. Non laboris commodo aliqua reprehenderit ut eu incididunt. Adipisicing fugiat tempor exercitation tempor reprehenderit est exercitation laboris culpa.
Covers the Fourier transform, its properties, applications in signal processing, and differential equations, emphasizing the concept of derivatives becoming multiplications in the frequency domain.
Covers the theory of numerical methods for frequency estimation on deterministic signals, including Fourier series and transform, Discrete Fourier transform, and the Sampling theorem.