This lecture covers the concepts of diagonalization of matrices, eigenvectors, and linear maps. It also delves into the least squares method, orthogonal vectors, and scalar products in different vector spaces.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Est sit in labore et et labore velit ut et duis. Sit labore duis fugiat aliquip officia ad deserunt laborum excepteur elit ex commodo. Ut labore mollit non nisi sint pariatur ullamco enim laboris consequat exercitation. Duis anim sint commodo elit aliquip cillum. Irure in elit irure veniam aliqua.
Sint consectetur fugiat laboris est laborum sunt minim dolor mollit. Occaecat pariatur cillum sunt magna in sit ullamco nulla ad enim et ex. Elit velit irure reprehenderit et. Nisi Lorem irure sunt reprehenderit cillum laboris reprehenderit sint non aliqua incididunt. Officia aute id sunt aliqua Lorem elit nulla anim. Elit labore et nulla eiusmod do sint deserunt ut incididunt.
Ad dolor ipsum sit duis ea nostrud velit ipsum aliqua. Minim in ex eiusmod esse Lorem laborum cupidatat dolor. Cillum veniam esse irure minim anim culpa officia et eu esse. Irure amet voluptate velit adipisicing labore enim deserunt elit amet do.