**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Probability Basics: Events and Independence

Description

This lecture covers the fundamentals of probability, including calculating event probabilities, working with conditional probabilities, and understanding pairwise and mutual independence. It also explores the limitations of Laplace's definition of probability and provides examples of applying probability concepts to scenarios like dice rolls and coin tosses.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

CS-101: Advanced information, computation, communication I

Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a

Related concepts (219)

Probability interpretations

The word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical, tendency of something to occur, or is it a measure of how strongly one believes it will occur, or does it draw on both these elements? In answering such questions, mathematicians interpret the probability values of probability theory. There are two broad categories of probability interpretations which can be called "physical" and "evidential" probabilities.

Outcome (probability)

In probability theory, an outcome is a possible result of an experiment or trial. Each possible outcome of a particular experiment is unique, and different outcomes are mutually exclusive (only one outcome will occur on each trial of the experiment). All of the possible outcomes of an experiment form the elements of a sample space. For the experiment where we flip a coin twice, the four possible outcomes that make up our sample space are (H, T), (T, H), (T, T) and (H, H), where "H" represents a "heads", and "T" represents a "tails".

Sample space

In probability theory, the sample space (also called sample description space, possibility space, or outcome space) of an experiment or random trial is the set of all possible outcomes or results of that experiment. A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, are listed as elements in the set. It is common to refer to a sample space by the labels S, Ω, or U (for "universal set"). The elements of a sample space may be numbers, words, letters, or symbols.

Conditional probability

In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occurring with some sort of relationship with another event A. In this event, the event B can be analyzed by a conditional probability with respect to A. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(AB) or occasionally P_B(A).

Binomial distribution

In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability ). A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial, i.

Related lectures (1,000)

Probability Basics: Events and Independence

Introduces the basics of probability, covering events, conditional probability, and independence in various scenarios.

Random Variables and Expected Value

Introduces random variables, probability distributions, and expected values through practical examples.

Advanced Probabilities: Random Variables & Expected Values

Explores advanced probabilities, random variables, and expected values, with practical examples and quizzes to reinforce learning.

Quantum Source Coding

Covers entropic notions in quantum sources, Shannon entropy, Von Neumann entropy, and source coding.

Probability Theory: Examples and Applications

Explores probability theory through examples like bit strings, Bernoulli trials, and the Monty Hall problem, as well as the generalized Bayes' theorem and random variable distributions.