Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Covers the fundamentals of multilayer neural networks and deep learning, including back-propagation and network architectures like LeNet, AlexNet, and VGG-16.
Introduces the fundamentals of regression in machine learning, covering course logistics, key concepts, and the importance of loss functions in model evaluation.
Explores loss functions, gradient descent, and step size impact on optimization in machine learning models, highlighting the delicate balance required for efficient convergence.