**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Cantor's Diagonal Argument

Description

This lecture covers Cantor's Diagonal Argument, demonstrating the uncountability of the set [0,1] by creating an element that cannot be listed. It also explores sequences of binary digits with infinite length and the concepts of countability and uncountability.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Related concepts (79)

CS-101: Advanced information, computation, communication I

Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a

Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory.

A set is the mathematical model for a collection of different things; a set contains elements or members, which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics.

In mathematics, fuzzy sets (a.k.a. uncertain sets) are sets whose elements have degrees of membership. Fuzzy sets were introduced independently by Lotfi A. Zadeh in 1965 as an extension of the classical notion of set. At the same time, defined a more general kind of structure called an L-relation, which he studied in an abstract algebraic context. Fuzzy relations, which are now used throughout fuzzy mathematics and have applications in areas such as linguistics , decision-making , and clustering , are special cases of L-relations when L is the unit interval [0, 1].

In set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.

In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set".

Related lectures (295)

Relations, Sequences, SummationCS-101: Advanced information, computation, communication I

Covers arithmetic progressions, lattices, formal verification, strings, explicit formulas, recurrence relations, closed formulas, and Cantor's Diagonal Argument.

Relations, Sequences and SummationsCS-101: Advanced information, computation, communication I

Covers strings, countable sets, cardinality, and the concept of countability, exploring the countability of various sets and Cantor diagonalization.

Recursive Algorithms: Induction & SortingCS-101: Advanced information, computation, communication I

Explores induction, recursion, and sorting algorithms, including merge sort and the proof of correctness for recursive algorithms.

Logic and Sets

Introduces logic, sets, and their operations, including subsets, Cartesian product, and set equivalence.

Nonlinear Dynamics: Chaos and Complex SystemsPHYS-460: Nonlinear dynamics, chaos and complex systems

Explores countable and uncountable sets, Cantor set, Mandelbrot set, and Box dimension in nonlinear dynamics and complex systems.