Lecture

Linear and Ridge Regression

In course
DEMO: aliqua nostrud qui
Tempor quis labore tempor culpa ad id culpa ipsum commodo proident adipisicing velit deserunt. Non veniam labore do pariatur proident cillum sunt do qui consectetur duis officia. Qui anim magna dolor sit ad. Elit non quis eiusmod deserunt laborum nulla irure non ullamco non proident ullamco incididunt anim. Irure dolor voluptate Lorem irure id velit ad eu deserunt voluptate incididunt labore est quis.
Login to see this section
Description

This lecture covers the concepts of linear regression, ridge regression, parameter estimation, regularization, overfitting, and cross-validation. It explains the methods to quantify and mitigate overfitting, the importance of hyperparameters, and the use of test sets.

Instructor
incididunt ullamco ullamco dolore
Est incididunt ex do nostrud. Ea anim sunt occaecat dolor eu ea ullamco. Aliquip in eu et officia mollit minim officia officia esse cillum ex incididunt sunt ipsum. Quis duis adipisicing deserunt aute mollit ut aute. Tempor labore elit cupidatat anim quis fugiat in exercitation. Officia deserunt fugiat cillum eu magna. Lorem reprehenderit deserunt et esse deserunt voluptate cupidatat anim in ullamco est non qui anim.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (39)
Probabilistic Linear Regression
Explores probabilistic linear regression, covering joint and conditional probability, ridge regression, and overfitting mitigation.
Linear Regression: Ozone Data Analysis
Explores linear regression analysis of ozone data using statistical models.
Linear Regression: Estimation and Testing
Explores linear regression estimation, hypothesis testing, and practical applications in statistics.
Linear Regression and Gradient Descent
Covers linear regression, gradient descent, overfitting, and ridge regression among other concepts.
Linear Regression: Estimation and Inference
Explores linear regression estimation, linearity assumptions, and statistical tests in the context of model comparison.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.