MOOC

Thermodynamics

Related publications (1,000)

Magnon-Assisted Magnetization Reversal of Ni81Fe19 Nanostripes on Y3Fe5O12 with Different Interfaces

Dirk Grundler, Andrea Mucchietto, Korbinian Baumgärtl

Magnetic bit writing by short-wave magnons without conversion to the electrical domain is expected to be a game-changer for in-memory computing architectures. Recently, the reversal of nanomagnets by propagating magnons was demonstrated. However, experimen ...
2024

Type-I antiferromagnetic Weyl semimetal InMnTi2

Nicola Marzari, Davide Grassano, Luca Binci

Topological materials have been a main focus of studies in the past decade due to their protected properties that can be exploited for the fabrication of new devices. Among them, Weyl semimetals are a class of topological semimetals with nontrivial linear ...
College Pk2024

Chiral Anomaly and Dynamos from Inhomogeneous Chemical Potential Fluctuations

In the standard model of particle physics, the chiral anomaly can occur in relativistic plasmas and plays a role in the early Universe, protoneutron stars, heavy-ion collisions, and quantum materials. It gives rise to a magnetic instability if the number d ...
Amer Physical Soc2024

Room-Temperature Quantum Optomechanics and Free-Electron Quantum Optics

Guanhao Huang

Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
EPFL2024

A continuous-wave and pulsed X-band electron spin resonance spectrometer operating in ultra-high vacuum for the study of low dimensional spin ensembles

Giovanni Boero, Fabio Donati, Soyoung Oh

We report the development of a continuous-wave and pulsed X-band electron spin resonance (ESR) spectrometer for the study of spins on ordered surfaces down to cryogenic temperatures. The spectrometer operates in ultra-high vacuum and utilizes a half-wavele ...
Aip Publishing2024

Light-Controlled Multiconfigurational Conductance Switching in a Single 1D Metal-Organic Wire

Christian Wäckerlin

Precise control of multiple spin states on the atomic scale presents a promising avenue for designing and realizing magnetic switches. Despite substantial progress in recent decades, the challenge of achieving control over multiconfigurational reversible s ...
Amer Chemical Soc2024

Electrically tunable giant Nernst effect in two-dimensional van der Waals heterostructures

Andras Kis, Guilherme Migliato Marega, Zhe Sun, Gabriele Pasquale

The Nernst effect, a transverse thermoelectric phenomenon, has attracted significant attention for its potential in energy conversion, thermoelectrics and spintronics. However, achieving high performance and versatility at low temperatures remains elusive. ...
2024

Anomalous‐Chern Steering of Topological Nonreciprocal Guided Waves

Romain Christophe Rémy Fleury, Haoye Qin, Zhechen Zhang, Qiaolu Chen

Nonreciprocal topological edge states based on external magnetic bias have been regarded as the last resort for genuine unidirectional wave transport, showing superior robustness over topological states with preserved time-reversal symmetry. However, fast ...
2024

Charge-Transfer States in Organic Nanowires

Lucile Annie Chassat

Charge separation processes in organic semiconductors play a pivotal role in diverse applications ranging from photovoltaics to photocatalysis. Understanding these mechanisms, particularly the role of hybrid charge-transfer (CT) states, is essential for ad ...
EPFL2024

High-order geometric integrators for the variational Gaussian wavepacket dynamics and application to vibronic spectra at finite temperature

Roya Moghaddasi Fereidani

Molecular quantum dynamics simulations are essential for understanding many fundamental phenomena in physics and chemistry. They often require solving the time-dependent Schrödinger equation for molecular nuclei, which is challenging even for medium-sized ...
EPFL2024

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.