Nicolas GrandjeanNicolas Grandjean received a PhD degree in physics from the University ofNice Sophia Antipolis in 1994 and shortly thereafter joined the French National Center for Scientific Research (CNRS) as a permanent staff member. In 2004, he was appointed tenure-track assistant professor at the École polytechnique fédérale de Lausanne (EPFL) where he created the Laboratory for advanced semiconductors for photonics and electronics. He was promoted to full professor in 2009. He was the director of the Institute of Condensed Matter Physics from 2012 to 2016 and then moved to the University of California at Santa Barbara where he spent 6 months as a visiting professor. Since 2018, he is the head of the School of Physics at the EPFL. He was awarded the Sandoz Family Foundation Grant for Academic Promotion, received the “Nakamura Lecturer” Award in 2010, the "Quantum Devices Award” at the 2017 Compound Semiconductor Week, and “2016 best teacher” award from the EPFL Physics School. His research interests are focused on the physics of nanostructures and III-V nitride semiconductor quantum photonics.
Benoît Marie Joseph DeveaudBenoit Deveaud is now Research Director at Ecole Polytechnique in Palaiseau (France)
Benoît Deveaud was born in France in 1952. In 1971, he enters Ecole Polytechnique in Paris where he specializes in physics. In 1974, he joins the National Center for research in Telecommunications (CNET).
He undertakes at the same time studies on the main impurity centers in III-V semiconductors, and continues his studies in physics by preparing a diploma in solid state physics in Rennes. In 1984, he defends his PhD thesis at the University of Grenoble, under the supervision of Gérard Martinez. Meanwhile, his team gets interested in semiconductor microstructures and launches studies on the structural and optical properties of superlattices based on gallium arsenide. These studies highlight for example vertical transport in superlattices as well as the quantification of excitonic energies in a quantum well.
In 1986 he joins the team of Daniel Chemla in Bell Laboratories (Holmdel, USA) and takes part in the development of the first luminescence set-up having a temporal resolution better than 1 picosecond. He studies then ultrafast processes in quantum wells.
Returning to France in 1988, at CNET, he coaches a laboratory of high-speed studies, interested in the optical and electronic properties of semiconductor materials.
Appointed professor in Physics at EPFL in October 1993, his research team studies the physics of ultrafast processes in semiconductor micro and nanostructures and in devices that use them. He has been the Director the Institute of Micro and Optoelectronics since 1998, then of the Institute of Quantum Photonic and Electronics from 2003 to 2008.
His team takes an active part in the "Quantum Photonics" National Center of Competence in Research, of which he was the Deputy Director from 2001 to 2005 then the Director from July 2005 till the end of the NCCR in 2013
From 2008 till 2014 he has been Dean for Research at EPFL and president of the research commission.
Starting in 2014, he has been head of Physics, till his departure from EPFL in 2017.
He has been a divisional editor of Physical Review Letters from 2001 to 2007.
Tobias KippenbergTobias J. Kippenberg is Full Professor of Physics at EPFL and leads the Laboratory of Photonics and Quantum Measurement. He obtained his BA at the RWTH Aachen, and MA and PhD at the California Institute of Technology (Caltech in Pasadena, USA). From 2005- 2009 he lead an Independent Research Group at the MPI of Quantum Optics, and is at EPFL since. His research interest are the Science and Applications of ultra high Q microcavities; in particular with his research group he discovered chip-scale Kerr frequency comb generation (Nature 2007, Science 2011) and observed radiation pressure backaction effects in microresonators that now developed into the field of cavity optomechanics (Science 2008). Tobias Kippenberg is alumni of the “Studienstiftung des Deutschen Volkes”. For his invention of “chip-scale frequency combs” he received he Helmholtz Price for Metrology (2009) and the EFTF Young Investigator Award (2010). For his research on cavity optomechanics, he received the EPS Fresnel Prize (2009). In addition he is recipient of the ICO Prize in Optics (2014), the Swiss National Latsis award (2015), the German Wilhelm Klung Award (2015) and ZEISS Research Award (2018). He is fellow of the APS and OSA, and listed since 2014 in the Thomas Reuters highlycited.com in the domain of Physics. EDUCATION 2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München 2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala) 2000: Master of Science (Applied Physics), California Institute of Technology 1998: BA in Physics, Technical University of Aachen (RWTH), Germany 1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany ACADEMIC POSITIONS 2013 - present: Full Professor EPFL 2010 - 2012: Associate Professor EPFL 2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne 2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of Quantum Optics (Division of Prof.T.W. Hänsch) 2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute 2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU) 2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology 2000-2004: Graduate Research Assistant, California Institute of Technology PRIZES AND HONORS: ZEISS Research Award 2018 Fellow of the APS 2016 Klung-Wilhelmy Prize 2015 Swiss Latsis Prize 2014 Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015 ICO Prize, 2013 EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010 Fresnel Prize of the European Physical Society (for contributions to Optomechanics) 2009 Helmholtz Prize for Metrology (for invention of the monolithic frequency comb) 2009 1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht 1st Physics Prize at the German National Science Contest May 1996 FELLOWSHIPS Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002 Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000 RESEARCH INTERESTS Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology PUBLICATIONS AND OFTEN CITED METRICS*: >70 Publications in peer reviewed journals Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en h-Index 54 (Google scholar H: 64, >25,000 citations) Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017) careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm KEY PUBLICATIONS AND REVIEWS: A. Ghadimi, et al. Elastic strain engineering for ultra high Q nanomechanical oscillators Science, (2018) Trocha, et al. Ultrafast distance measurements using soliton microresonator frequency combs Science, Vol. 359 (2018) [joint work with C. Koos] Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications Nature (2017) [joint work with C. Koos] V. Brasch, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, vol. 351, num. 6271 (2015) Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Reviews of Modern Physics 86, 1391-1452, (2014) Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate. Nature (2014). Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63-67 (2012). Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559, (2011). Weis, S. et al. Optomechanically induced transparency. Science 330, 1520-1523 (2010). Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172-1176, (2008). Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature (2007) Schliesser, A., DelHaye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters 97, (2006). Elyahou KaponEli Kapon received his Ph.D. in physics from Tel Aviv University, Israel in 1982. He then spent two years at the California Institute of Technology, Pasadena, as a Chaim Weizmann Research Fellow, where he worked mainly on phase-locked arrays of semiconductor lasers. From 1984 till 1993 he was with Bellcore, New Jersey, first as member of technical staff, and from 1989 as District Manager. At Bellcore, he worked on integrated optics in III-V compounds and on low-dimensional semiconductor nanostructures, particularly quantum wires and quantum dots. He managed the Quantum Structures District and the Integrated Optoelectronics District at Bellcore from 1989 till 1992 and from 1992 till 1993, respectively. In 1993 he was appointed Professor of Physics of Nanostructures at the Physics Department of the Swiss Federal Institute of Technology in Lausanne (EPFL), where he heads the Laboratory of Physics of Nanostructures. In 1999-2000 he spent his sabbatical as Sackler Scholar at the Mortimer and Raymond Sackler Institute of Advanced Studies in Tel Aviv University, Israel. During that period he helped establishing the Tel Aviv University Center for Nanoscience and Nanotechnology and served as its first Director from 2000 to 2002. In 2001 he founded the start up BeamExpress and has been serving as its Chief Scientist. He is currently serving as Director of the Institute of Quantum Electronics and Photonics in the Faculty of Basic Sciences at EPFL. His research interests include self-organization of nanostructures, optical properties and electron transport in low-dimensional quantum structures, quantum wire and quantum dot lasers, photonic crystals and vertical cavity surface emitting lasers. He is author or co-author of >300 journal articles, >10 patents, and editor of two books on semiconductor lasers.
Prof. Kapon is Fellow of the Optical Society of America, the Institute of Electrical and Electronics Engineers, and the American Physical Society of America, and a recipient of a 2007 Humboldt Research Award.