Nicolas GrandjeanNicolas Grandjean received a PhD degree in physics from the University ofNice Sophia Antipolis in 1994 and shortly thereafter joined the French National Center for Scientific Research (CNRS) as a permanent staff member. In 2004, he was appointed tenure-track assistant professor at the École polytechnique fédérale de Lausanne (EPFL) where he created the Laboratory for advanced semiconductors for photonics and electronics. He was promoted to full professor in 2009. He was the director of the Institute of Condensed Matter Physics from 2012 to 2016 and then moved to the University of California at Santa Barbara where he spent 6 months as a visiting professor. Since 2018, he is the head of the School of Physics at the EPFL. He was awarded the Sandoz Family Foundation Grant for Academic Promotion, received the “Nakamura Lecturer” Award in 2010, the "Quantum Devices Award” at the 2017 Compound Semiconductor Week, and “2016 best teacher” award from the EPFL Physics School. His research interests are focused on the physics of nanostructures and III-V nitride semiconductor quantum photonics.
Giorgio MargaritondoCitizen of the USA and Switzerland, Giorgio Margaritondo was born in Rome, Italy, in 1946. He received the Laurea summa cum laude from the University of Rome in 1969. From 1969 he was an employee of the Italian National Research Council in Rome and Frascati and, in 1975-77, he was at Bell Laboratories in the USA. From 1978 to 1990, he was professor of physics at the University of Wisconsin-Madison in the USA; in 1984 he was nominated associate director for research of the Synchrotron Radiation Center of the same university. In 1990 he was nominated "professeur ordinaire" (full professor) at the EPFL; he directed the Institute of Applied Physics and the Physics Department. He was also a honorary faculty member at Vanderbilt University in Nashville. In 2001 he became Dean of the EPFL Faculty of Basic Sciences. In 2004 he was nominated Provost and he served until 2010, when he became Dean of Continuing Education, until his retirement from the EPFL in 2016 In addition to teaching general physics, his activity concerns the physics of semiconductors and superconductors (electronic states, surfaces and interfaces) and of biological systems; his main experimental techniques are electron spectroscopy and spectromicroscopy, x-ray imaging and scanning near-field microscopy, including experiments with synchrotron light and with free electron lasers. Author of more than 700 scientific publications and 9 books, he was also coordinator in 1995-98 of the scientific division of the Elettra synchrotron in Trieste. In 1997-2003 he was coordinator of the European Commission Round Table on synchrotron radiation, and then became president of the Council of the European Commission Integrated Initiative on Synchrotron and Free Electron Laser Science (IA-SFS and then ELISA), the largest network in the world in this domain. In 2011-15, he was Editor-in-Chief of Journal of Physics D (Applied Physics). He is currently vice-president of the council of the Università della Svizzera Italiana (USI), and president of the Scientific and Technological Committee of the Italian Institute of Technology (IIT). He is Fellow of the American Physical Society and of the American Vacuum Society and Fellow and Chartered Physicist of the Institute of Physics.
Edoardo CharbonEdoardo Charbon (SM’00 F’17) received the Elektrotechnik Diploma from ETH Zurich, the M.S. from the University of California at San Diego, and the Ph.D. from the University of California at Berkeley in 1988, 1991, and 1995, respectively, all in electrical engineering and EECS. He has consulted with numerous organizations, including Bosch, X-Fab, Texas Instruments, Maxim, Sony, Agilent, and the Carlyle Group. He was with Cadence Design Systems from 1995 to 2000, where he was the architect of the company's initiative on information hiding for intellectual property protection. In 2000, he joined Canesta Inc., as the Chief Architect, where he led the development of wireless 3-D CMOS image sensors. Since 2002 he has been a member of the faculty of EPFL, where is a full professor since 2015. From 2008 to 2016 he was full professor and chair at the Delft University of Technology, where he spearheaded the university's effort on cryogenic electronics for quantum computing as part of QuTech. He has been the driving force behind the creation of deep-submicron CMOS SPAD technology, which is mass-produced since 2015 and is present in smartphones, telemeters, proximity sensors, and medical diagnostics tools. His interests span from 3-D vision, LiDAR, FLIM, FCS, NIROT to super-resolution microscopy, time-resolved Raman spectroscopy, and cryo-CMOS circuits and systems for quantum computing. He has authored or co-authored over 400 papers and two books, and he holds 23 patents. Dr. Charbon is a distinguished visiting scholar of the W. M. Keck Institute for Space at Caltech, a fellow of the Kavli Institute of Nanoscience Delft, a distinguished lecturer of the IEEE Photonics Society, and a fellow of the IEEE.
Nico de RooijNico de Rooij is Professor Emeritus of EPFL and previous Vice-President of CSEM SA. He was Professor of Microengineering at EPFL and Head of the Sensors, Actuators and Microsystems Laboratory (
SAMLAB
) from 2009 to 2016. At
CSEM SA
he was responsible for the EPFL CSEM coordination from 2012 to 2016. His research activities include the design, micro fabrication and application of miniaturized silicon based sensors, actuators, and microsystems. He authored and coauthored over 400 published
journal papers
in these areas.
He was Professor at the University of Neuchatel and Head of the Sensors, Actuators and Microsystems Laboratory (SAMLAB) from 1982 to 2008. Since October 1990 till October 1996 and again from October 2002 until June 2008, he has been the director of the Institute of Microtechnology of the University of Neuchatel (IMT UniNE). He lectured at the Swiss Federal Institute of Technology, Zurich (ETHZ), and since 1989, he has been a part-time professor at the Swiss Federal Institute of Technology, Lausanne (EPFL). He has been appointed Vice-President of the CSEM SA in February 2008 and headed the newly created Microsystems Technology Division of CSEM SA, from 2008 until 2012. He was Director of EPFL's Institute of Microengineering (EPFL STI IMT) from 2009 to 2012, following the transfer of IMT Uni-NE to EPFL.
Dr. de Rooij is a Fellow of the IEEE and Fellow of the Institute of Physics (UK). He recieved the IEEE
Jun-Ichi Nishizawa Gold Medal
, the Schlumberger Prize as well as the
MNE Fellow Award 2016
. He was awarded a Visiting Investigatorship Program (VIP) in MEMS/NEMS Systems by the
A*STAR Science and Engineering Council (SERC)
, Singapore, hosted by
SIMTech
, for the period 2005-2008.
Prof. de Rooij is Corresponding Member of the
Royal Netherlands Academy of Arts and Sciences
and Individual Member of the
Swiss Academy of Engineering Sciences
.
He has been serving on the Editorial Boards of the
IEEE/ASME Journal of Microelectromechanical Systems (IEEE JMEMS)
,
the IEEE proceedings
,
the Journal of Micromechanics and Microengineering, JM & M,
,
the Sensors and Actuators
,and
Sensors and Materials
. He was Member of the Information and Communication technology jury of the BBVA Foundation Frontiers of Knowledge Awards from 2009 to 2012.
Dr. de Rooij is (or was) Member of numerous international steering committees of conference series as well as
technical paper review panels including the steering committee of the International Conference on Solid-State
Sensors and Actuators and of Eurosensors. He acted as European Program Chairman of Transducers '87 and General Chairman of Transducers '89, Montreux, Switzerland.
He has supervised more than 70 Ph.D. students, who have successfully completed their
Ph.D. thesis.
He received his M.Sc. degree in physical chemistry from the State University of Utrecht, The Netherlands, in 1975, and a Ph.D. degree from Twente University of Technology, The Netherlands, in 1978. From 1978 to 1982, he worked at the Research and Development Department of Cordis Europa N.V., The Netherlands.
René SalathéRené Paul Salathé is Professor em. at EPFL since 2009. He is currently a technology consultant for several companies and he serves as an expert member of the Life Science team at the Swiss Innovation Agency (KTI/CTI) in Bern, on the scientific advisory board of the Fraunhofer-Institut für Lasertechnik ILT in Aachen, and he participates on expert panels for the Deutsche Forschungsgemeinschaft. He is a member of the Swiss Society for Optics and Microscopy, the European Optical Society, the Optical Society of America, a senior member of the IEEE, and a life time member of the Swiss Physical Society.
René Paul Salathé received the MS, PhD, and Habilitation (Privatdozent) degrees at the University of Bern in 1970, 1974, and 1979, respectively. Prior to his appointment at EPFL in 1989, he was directing the division "Material Testing and Technology" at the research and development center of the Swiss PTT. He has been active in the fields of semiconductor lasers, fibers, integrated optics, laser processing, and biomedical optics. The results of his research activities have been published more than 250 scientific contributions and 37 PhD theses at EPFL. Several start-up companies have been founded based on patents elaborated in his laboratory and/or by his PhD students. His actual research interests are in the areas of laser tweezers in micro-fluidics for biochemical applications and in optical fiber sensor applications.
Elyahou KaponEli Kapon received his Ph.D. in physics from Tel Aviv University, Israel in 1982. He then spent two years at the California Institute of Technology, Pasadena, as a Chaim Weizmann Research Fellow, where he worked mainly on phase-locked arrays of semiconductor lasers. From 1984 till 1993 he was with Bellcore, New Jersey, first as member of technical staff, and from 1989 as District Manager. At Bellcore, he worked on integrated optics in III-V compounds and on low-dimensional semiconductor nanostructures, particularly quantum wires and quantum dots. He managed the Quantum Structures District and the Integrated Optoelectronics District at Bellcore from 1989 till 1992 and from 1992 till 1993, respectively. In 1993 he was appointed Professor of Physics of Nanostructures at the Physics Department of the Swiss Federal Institute of Technology in Lausanne (EPFL), where he heads the Laboratory of Physics of Nanostructures. In 1999-2000 he spent his sabbatical as Sackler Scholar at the Mortimer and Raymond Sackler Institute of Advanced Studies in Tel Aviv University, Israel. During that period he helped establishing the Tel Aviv University Center for Nanoscience and Nanotechnology and served as its first Director from 2000 to 2002. In 2001 he founded the start up BeamExpress and has been serving as its Chief Scientist. He is currently serving as Director of the Institute of Quantum Electronics and Photonics in the Faculty of Basic Sciences at EPFL. His research interests include self-organization of nanostructures, optical properties and electron transport in low-dimensional quantum structures, quantum wire and quantum dot lasers, photonic crystals and vertical cavity surface emitting lasers. He is author or co-author of >300 journal articles, >10 patents, and editor of two books on semiconductor lasers.
Prof. Kapon is Fellow of the Optical Society of America, the Institute of Electrical and Electronics Engineers, and the American Physical Society of America, and a recipient of a 2007 Humboldt Research Award.
Yves BellouardDr. Yves Bellouard is Associate Professor in Microengineering at Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, where he heads the Galatea lab and the Richemont Chair in micromanufacturing. He received a BS in Theoretical Physics and a MS in Applied Physics from Université Pierre et Marie Curie in Paris, France in 1994-1995 and a PhD in Microengineering from Ecole Polytechnique Fédérale de Lausanne (EPFL) in Lausanne, Switzerland in 2000. For his PhD work, he received the Omega Scientific prize (2001) for outstanding contribution in the field of microengineering for his work on Shape Memory Alloys. Before joining EPFL in 2015, he was Associate Professor at Eindhoven University of Technologies (TU/e) in the Netherlands and prior to that, Research Scientist at Rensselaer Polytechnic Institute (RPI) in Troy, New York for about four years where he started working on femtosecond laser processing of glass materials. From 2010 until 2013, Yves Bellouard initiated and coordinated the Femtoprint project, a European research initiative aiming at investigating a table-top printer for microsystems ('3D printing of microsystems'). In 2013, he received a prestigious ERC Starting Grant (Consolidator-2012) from the European Research Council and a JSPS Fellowship from the Japan Society for the Promotion of Science. His current research interests are on new paradigms for system integration at the microscale and in particular laser-based methods to tailor material properties for achieving higher level of integration in microsystems, like for instance integrating optics, mechanics and fluidics in a single monolith. These approaches open new opportunities for direct-write methods of microsystems (3D printing). Personal website
Martinus GijsMartin A.M. Gijs received his degree in physics in 1981 from the Katholieke Universiteit Leuven, Belgium and his Ph.D. degree in physics at the same university in 1986. He joined the Philips Research Laboratories in Eindhoven, The Netherlands, in 1987. Subsequently, he has worked there on micro-and nano-fabrication processes of high critical temperature superconducting Josephson and tunnel junctions, the microfabrication of microstructures in magnetic multilayers showing the giant magnetoresistance effect, the design and realisation of miniaturised motors for hard disk applications and the design and realisation of planar transformers for miniaturised power applications. He joined EPFL in 1997. His present interests are in developing technologies for novel magnetic devices, new microfabrication technologies for microsystems fabrication in general and the development and use of microsystems technologies for microfluidic and biomedical applications in particular.