**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Sonja Rieder

This person is no longer with EPFL

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (2)

In this paper, we derive elementary M- and optimally robust asymptotic linear (AL)-estimates for the parameters of an Ornstein-Uhlenbeck process. Simulation and estimation of the process are already well-studied, see Iacus (Simulation and inference for stochastic differential equations. Springer, New York, 2008). However, in order to protect against outliers and deviations from the ideal law the formulation of suitable neighborhood models and a corresponding robustification of the estimators are necessary. As a measure of robustness, we consider the maximum asymptotic mean square error (maxasyMSE), which is determined by the influence curve (IC) of AL estimates. The IC represents the standardized influence of an individual observation on the estimator given the past. In a first step, we extend the method of M-estimation from Huber (Robust statistics. Wiley, New York, 1981). In a second step, we apply the general theory based on local asymptotic normality, AL estimates, and shrinking neighborhoods due to Kohl et al. (Stat Methods Appl 19:333-354, 2010), Rieder (Robust asymptotic statistics. Springer, New York, 1994), Rieder (2003), and Staab (1984). This leads to optimally robust ICs whose graph exhibits surprising behavior. In the end, we discuss the estimator construction, i.e. the problem of constructing an estimator from the family of optimal ICs. Therefore we carry out in our context the One-Step construction dating back to LeCam (Asymptotic methods in statistical decision theory. Springer, New York, 1969) and compare it by means of simulations with MLE and M-estimator.

In this thesis, we treat robust estimation for the parameters of the Ornstein–Uhlenbeck process, which are the mean, the variance, and the friction. We start by considering classical maximum likelihood estimation. For the simulation study, where we also investigate the choice of the time lag, we use the method of moment (MoM) estimator as initial estimator for the friction parameter of the maximum likelihood estimator (MLE). However, in several aspects the MLE is not robust. For robustification, we first derive elementary M-estimates by extending the method of M-estimation from Huber (1981). We use an intuitively robustified MoM estimate as initial estimate and compare by means of simulation the M-estimate with the MLE. This approach is, however, only ad-hoc since Huber’s minimum Fisher information and minimax asymptotic variance theory remains incomplete for simultaneous location and scale, and does not cover more general models (as for example the Ornstein–Uhlenbeck process). A more general robustness concept due to Kohl et al. (2010), Rieder (1994), and Staab (1984) is based on local asymptotic normality (LAN), asymptotically linear (AL) estimates, and shrinking neighborhoods. We then apply this concept to the Ornstein–Uhlenbeck process. As a measure of robustness, we consider the maximum asymptotic mean square error (maxasyMSE), which is determined by the influence curve (IC) of AL estimates. The IC represents the standardized influence of an individual observation on the estimator given the past. For two kind of neighborhoods (average and average square neighborhoods) we obtain optimally robust ICs. In case of average neighborhoods, their graph exhibits surprising, redescending behavior. For average square neighborhoods the graph is between the one of the elementary M-estimates and the MLE. Finally, we discuss the estimator construction, that is, the problem of constructing an estimator from the family of optimal ICs. We carry out in our context the One-Step construction dating back to LeCam and use both an intuitively robustified MoM estimate and the elementary M-estimate as initial estimate. This results in optimally AL estimates (for average and average square neighborhoods). By means of simulation we then compare the different estimators: MLE, elementary M-estimates, and optimally AL estimates. In addition, we give an application to electricity prices.