**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Robust parameter estimation for the Ornstein-Uhlenbeck process

Abstract

In this paper, we derive elementary M- and optimally robust asymptotic linear (AL)-estimates for the parameters of an Ornstein-Uhlenbeck process. Simulation and estimation of the process are already well-studied, see Iacus (Simulation and inference for stochastic differential equations. Springer, New York, 2008). However, in order to protect against outliers and deviations from the ideal law the formulation of suitable neighborhood models and a corresponding robustification of the estimators are necessary. As a measure of robustness, we consider the maximum asymptotic mean square error (maxasyMSE), which is determined by the influence curve (IC) of AL estimates. The IC represents the standardized influence of an individual observation on the estimator given the past. In a first step, we extend the method of M-estimation from Huber (Robust statistics. Wiley, New York, 1981). In a second step, we apply the general theory based on local asymptotic normality, AL estimates, and shrinking neighborhoods due to Kohl et al. (Stat Methods Appl 19:333-354, 2010), Rieder (Robust asymptotic statistics. Springer, New York, 1994), Rieder (2003), and Staab (1984). This leads to optimally robust ICs whose graph exhibits surprising behavior. In the end, we discuss the estimator construction, i.e. the problem of constructing an estimator from the family of optimal ICs. Therefore we carry out in our context the One-Step construction dating back to LeCam (Asymptotic methods in statistical decision theory. Springer, New York, 1969) and compare it by means of simulations with MLE and M-estimator.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (34)

Related publications (142)

Related MOOCs (4)

Robust statistics

Robust statistics are statistics with good performance for data drawn from a wide range of probability distributions, especially for distributions that are not normal. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from a parametric distribution.

M-estimator

In statistics, M-estimators are a broad class of extremum estimators for which the objective function is a sample average. Both non-linear least squares and maximum likelihood estimation are special cases of M-estimators. The definition of M-estimators was motivated by robust statistics, which contributed new types of M-estimators. However, M-estimators are not inherently robust, as is clear from the fact that they include maximum likelihood estimators, which are in general not robust.

Maximum likelihood estimation

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Selected Topics on Discrete Choice

Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t

A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...

Daniel Kuhn, Yves Rychener, Viet Anh Nguyen

The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically ...

2024,

The p-Laplacian problem -del & sdot; ((mu + |del u|(p-2))del u) = f is considered, where mu is a given positive number. An anisotropic a posteriori residual-based error estimator is presented. The error estimator is shown to be equivalent, up to higher ord ...