In the past decades, two recording tools have established themselves as the working horses in the field of electrophysiological cell research: the microelectrode array (MEA) and the optical fluorescence imaging. The former is a grid of miniature electrodes ...
In this paper, the design of a low-noise amplifier (LNA) for a 32x32 pixel microelectrode array (MEA) is presented. Its gain and noise amount to 50 dB and 10 μVrms, respectively, at a bandwidth of 66 kHz. The LNA consumes less than 85 μW. The integrated of ...
A new bio-interface for active MEAs is presented in this paper. Unlike standard approaches that deposit MEA electrodes using post-processing of the integrated circuit, the proposed structure is based on Ti/Pt microelectrodes inserted by microfabrication in ...
A prototype of a high-density multielectrode array for in vitro recording of electrogenic cell networks has been developed. On a surface of 1.92x1.92mm2, it includes 32x32 pixels with a dimension of 60x60µm2. For local amplification of the sensed extracell ...