Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A family of effective equations that capture the long time dispersive effects of wave propagation in heterogeneous media in an arbitrary large periodic spatial domain Ω⊂Rd over long time is proposed and analyzed. For a wave equatio ...
In this paper we provide a general framework for model reduction methods applied to fluid flow in porous media. Using reduced basis and numerical homogenization techniques we show that the complexity of the numerical approximation of Stokes flow in heterog ...
In this paper we provide a general framework for model reduction methods applied to fluid flow in porous media. Using reduced basis and numerical homogenization techniques we show that the complexity of the numerical approximation of Stokes flow in heterog ...
A reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) for a class of nonlinear homogenization elliptic problems of nonmonotone type is introduced. In this approach, the solutions of the micro problems needed to estimate the macroscopic ...
A finite element heterogeneous multiscale method is proposed for solving the Stokes problem in porous media. The method is based on the coupling of an effective Darcy equation on a macroscopic mesh with unknown permeabilities recovered from micro finite el ...
A reduced basis Darcy-Stokes finite element heterogeneous multiscale method (RB-DS-FE-HMM) is proposed for the Stokes problem in porous media. The multiscale method is based on the Darcy-Stokes finite element heterogeneous multiscale method (DS-FE-HMM) int ...
This paper gives numerical experiments for the Finite Element Heterogeneous Multiscale Method applied to problems in linear elasticity, which has been analyzed in [A. Abdulle, Math. Models Methods Appl. Sci. 16, 2006]. The main results for the FE-HMM a pri ...
A family of effective equations that capture the long time dispersive effects of wave propagation in heterogeneous media in an arbitrary large periodic spatial domain Omega subset of R-d is proposed and analyzed. For a wave equation with highly oscillatory ...
We consider a finite element method (FEM) with arbitrary polynomial degree for nonlinear monotone elliptic problems. Using a linear elliptic projection, we first give a new short proof of the optimal convergence rate of the FEM in the L2 norm. We then deri ...
A fully discrete analysis of the finite element heterogeneous multiscale method (FE-HMM) for elliptic problems with N+1 well-separated scales is discussed. The FE-HMM is a numerical homogenization method that relies on a macroscopic scheme (macro FEM) for ...