Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Doped hydrogenated amorphous silicon a-Si:H films of only a few nanometer thin find application in a-Si:H/crystalline silicon heterojunction solar cells. Although such films may yield a field effect at the interface, their electronic passivation properties ...
In this article, we report on the use of transmission electron microscopy (TEM) for the fabrication of high-performance textured amorphous/crystalline silicon (a-Si:H/c-Si) heterojunction (HJ) solar cells. Whereas classical thin-film characterization techn ...
The electronic properties of hydrogenated amorphous silicon (a-Si:H) relax following stretched exponentials. This phenomenon was explained in the past by dispersive hydrogen diffusion, or by retrapping included hydrogen motion. In this letter, the authors ...
Intrinsic hydrogenated amorphous silicon (a-Si:H) films can yield in outstanding electronic surface passivation of crystalline silicon (c-Si) wafers as utilized in the HIT (heterojunction with intrinsic thin layer) solar cells. We have studied the correlat ...
The a-Si:H / c-Si heterostructure, is an attractive solution to avoid the presence of highly recombinative metal contacts at the surfaces of c-Si based solar cells. To assure good interface passivation, insertion of a sandwiched thin device-grade intrinsic ...