We introduce a novel stochastic volatility model where the squared volatility of the asset return follows a Jacobi process. It contains the Heston model as a limit case. We show that the joint density of any finite sequence of log-returns admits a Gram–Cha ...
This thesis presents new flexible dynamic stochastic models for the evolution of market prices and new methods for the valuation of derivatives. These models and methods build on the recently characterized class of polynomial jump-diffusion processes for w ...
We introduce a novel class of credit risk models in which the drift of the survival process of a firm is a linear function of the factors. The prices of defaultable bonds and credit default swaps (CDS) are linear-rational in the factors. The price of a CDS ...
We derive analytic series representations for European option prices in polynomial stochastic volatility models. This includes the Jacobi, Heston, Stein-Stein, and Hull-White models, for which we provide numerical case studies. We find that our polynomial ...